dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

360 lines
16 KiB

#include "opendbc/safety/safety_declarations.h"
// ISO 11270
static const float ISO_LATERAL_ACCEL = 3.0; // m/s^2
static const float EARTH_G = 9.81;
static const float AVERAGE_ROAD_ROLL = 0.06; // ~3.4 degrees, 6% superelevation
// check that commanded torque value isn't too far from measured
static bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// check that commanded value isn't fighting against driver
static bool driver_limit_check(int val, int val_last, const struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
// torque delta/rate limits
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// driver
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// real time check, mainly used for steer torque rate limiter
static bool rt_torque_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return max_limit_check(val, highest_val, lowest_val);
}
// Safety checks for torque-based steering commands
bool steer_torque_cmd_checks(int desired_torque, int steer_req, const TorqueSteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
bool alka = (alternative_experience & ALT_EXP_ALKA) != 0;
if (controls_allowed || alka) {
// Some safety models support variable torque limit based on vehicle speed
int max_torque = limits.max_torque;
if (limits.dynamic_max_torque) {
const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.;
max_torque = interpolate(limits.max_torque_lookup, fudged_speed) + 1;
max_torque = CLAMP(max_torque, -limits.max_torque, limits.max_torque);
}
// *** global torque limit check ***
violation |= max_limit_check(desired_torque, max_torque, -max_torque);
// *** torque rate limit check ***
if (limits.type == TorqueDriverLimited) {
violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver,
max_torque, limits.max_rate_up, limits.max_rate_down,
limits.driver_torque_allowance, limits.driver_torque_multiplier);
} else {
violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas,
limits.max_rate_up, limits.max_rate_down, limits.max_torque_error);
}
desired_torque_last = desired_torque;
// *** torque real time rate limit check ***
violation |= rt_torque_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta);
// every RT_INTERVAL set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last);
if (ts_elapsed > MAX_RT_INTERVAL) {
rt_torque_last = desired_torque;
ts_torque_check_last = ts;
}
}
// no torque if controls is not allowed
if (!(controls_allowed || alka) && (desired_torque != 0)) {
violation = true;
}
// certain safety modes set their steer request bit low for one or more frame at a
// predefined max frequency to avoid steering faults in certain situations
bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0);
if (!limits.has_steer_req_tolerance) {
if (steer_req_mismatch) {
violation = true;
}
} else {
if (steer_req_mismatch) {
if (invalid_steer_req_count == 0) {
// disallow torque cut if not enough recent matching steer_req messages
if (valid_steer_req_count < limits.min_valid_request_frames) {
violation = true;
}
// or we've cut torque too recently in time
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last);
if (ts_elapsed < limits.min_valid_request_rt_interval) {
violation = true;
}
} else {
// or we're cutting more frames consecutively than allowed
if (invalid_steer_req_count >= limits.max_invalid_request_frames) {
violation = true;
}
}
valid_steer_req_count = 0;
ts_steer_req_mismatch_last = ts;
invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames);
} else {
valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames);
invalid_steer_req_count = 0;
}
}
// reset to 0 if either controls is not allowed or there's a violation
if (violation || !(controls_allowed || alka)) {
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_torque_check_last = ts;
ts_steer_req_mismatch_last = ts;
}
return violation;
}
static bool rt_angle_rate_limit_check(AngleSteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
// *** angle real time rate limit check ***
int max_rt_msgs = ((float)limits.frequency * MAX_RT_INTERVAL / 1e6 * 1.2) + 1; // 1.2x buffer
if ((int)rt_angle_msgs > max_rt_msgs) {
violation = true;
}
rt_angle_msgs += 1U;
// every RT_INTERVAL reset message counter
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_angle_check_last);
if (ts_elapsed >= MAX_RT_INTERVAL) {
rt_angle_msgs = 0;
ts_angle_check_last = ts;
}
return violation;
}
// Safety checks for angle-based steering commands
bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const AngleSteeringLimits limits) {
bool violation = false;
bool alka = (alternative_experience & ALT_EXP_ALKA) != 0;
if ((controls_allowed || alka) && steer_control_enabled) {
// convert floating point angle rate limits to integers in the scale of the desired angle on CAN,
// add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are
// always slightly above openpilot's in case we read an updated speed in between angle commands
// TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset
const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.;
int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.;
int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.;
// allow down limits at zero since small floats from openpilot will be rounded to 0
// TODO: openpilot should be cognizant of this and not send small floats
int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down);
int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up);
// check that commanded angle value isn't too far from measured, used to limit torque for some safety modes
// ensure we start moving in direction of meas while respecting relaxed rate limits if error is exceeded
if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) {
// flipped fudge to avoid false positives
const float fudged_speed_error = (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.;
const int delta_angle_up_relaxed = (interpolate(limits.angle_rate_up_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.;
const int delta_angle_down_relaxed = (interpolate(limits.angle_rate_down_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.;
// the minimum and maximum angle allowed based on the measured angle
const int lowest_desired_angle_error = angle_meas.min - limits.max_angle_error - 1;
const int highest_desired_angle_error = angle_meas.max + limits.max_angle_error + 1;
// the MAX is to allow the desired angle to hit the edge of the bounds and not require going under it
if (desired_angle_last > highest_desired_angle_error) {
const int delta = (desired_angle_last >= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed;
highest_desired_angle = MAX(desired_angle_last - delta, highest_desired_angle_error);
} else if (desired_angle_last < lowest_desired_angle_error) {
const int delta = (desired_angle_last <= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed;
lowest_desired_angle = MIN(desired_angle_last + delta, lowest_desired_angle_error);
} else {
// already inside error boundary, don't allow commanding outside it
highest_desired_angle = MIN(highest_desired_angle, highest_desired_angle_error);
lowest_desired_angle = MAX(lowest_desired_angle, lowest_desired_angle_error);
}
// don't enforce above the max steer
// TODO: this should always be done
lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_angle, limits.max_angle);
highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_angle, limits.max_angle);
}
// check not above ISO 11270 lateral accel assuming worst case road roll
if (limits.angle_is_curvature) {
// Limit to average banked road since safety doesn't have the roll
static const float MAX_LATERAL_ACCEL = ISO_LATERAL_ACCEL - (EARTH_G * AVERAGE_ROAD_ROLL); // ~2.4 m/s^2
// Allow small tolerance by using minimum speed and rounding curvature up
const float speed_lower = MAX(vehicle_speed.min / VEHICLE_SPEED_FACTOR, 1.0);
const float speed_upper = MAX(vehicle_speed.max / VEHICLE_SPEED_FACTOR, 1.0);
const int max_curvature_upper = (MAX_LATERAL_ACCEL / (speed_lower * speed_lower) * limits.angle_deg_to_can) + 1.;
const int max_curvature_lower = (MAX_LATERAL_ACCEL / (speed_upper * speed_upper) * limits.angle_deg_to_can) - 1.;
// ensure that the curvature error doesn't try to enforce above this limit
if (desired_angle_last > 0) {
lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_lower, max_curvature_lower);
highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_upper, max_curvature_upper);
} else {
lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_upper, max_curvature_upper);
highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_lower, max_curvature_lower);
}
}
// check for violation;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
if (limits.inactive_angle_is_zero) {
violation |= desired_angle != 0;
} else {
const int max_inactive_angle = CLAMP(angle_meas.max, -limits.max_angle, limits.max_angle) + 1;
const int min_inactive_angle = CLAMP(angle_meas.min, -limits.max_angle, limits.max_angle) - 1;
violation |= max_limit_check(desired_angle, max_inactive_angle, min_inactive_angle);
}
}
// No angle control allowed when controls are not allowed
if (!(controls_allowed || alka)) {
violation |= steer_control_enabled;
}
// reset to current angle if either controls is not allowed or there's a violation
if (violation || !(controls_allowed || alka)) {
if (limits.inactive_angle_is_zero) {
desired_angle_last = 0;
} else {
desired_angle_last = CLAMP(angle_meas.values[0], -limits.max_angle, limits.max_angle);
}
}
return violation;
}
static float get_curvature_factor(const float speed, const AngleSteeringParams params) {
// Matches VehicleModel.curvature_factor()
return 1. / (1. - (params.slip_factor * (speed * speed))) / params.wheelbase;
}
static float get_angle_from_curvature(const float curvature, const float curvature_factor, const AngleSteeringParams params) {
// Matches VehicleModel.get_steer_from_curvature()
static const float RAD_TO_DEG = 57.29577951308232;
return curvature * params.steer_ratio / curvature_factor * RAD_TO_DEG;
}
bool steer_angle_cmd_checks_vm(int desired_angle, bool steer_control_enabled, const AngleSteeringLimits limits,
const AngleSteeringParams params) {
// This check uses a simple vehicle model to allow for constant lateral acceleration and jerk limits across all speeds.
// TODO: remove the inaccurate breakpoint angle limiting function above and always use this one
// Highway curves are rolled in the direction of the turn, add tolerance to compensate
static const float MAX_LATERAL_ACCEL = ISO_LATERAL_ACCEL + (EARTH_G * AVERAGE_ROAD_ROLL); // ~3.6 m/s^2
// Lower than ISO 11270 lateral jerk limit, which is 5.0 m/s^3
static const float MAX_LATERAL_JERK = 3.0 + (EARTH_G * AVERAGE_ROAD_ROLL); // ~3.6 m/s^3
const float fudged_speed = MAX((vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.0, 1.0);
const float curvature_factor = get_curvature_factor(fudged_speed, params);
bool violation = false;
bool alka = (alternative_experience & ALT_EXP_ALKA) != 0;
if ((controls_allowed || alka) && steer_control_enabled) {
// *** ISO lateral jerk limit ***
// calculate maximum angle rate per second
const float max_curvature_rate_sec = MAX_LATERAL_JERK / (fudged_speed * fudged_speed);
const float max_angle_rate_sec = get_angle_from_curvature(max_curvature_rate_sec, curvature_factor, params);
// finally get max angle delta per frame
const float max_angle_delta = max_angle_rate_sec / (float)limits.frequency;
const int max_angle_delta_can = (max_angle_delta * limits.angle_deg_to_can) + 1.;
// NOTE: symmetric up and down limits
const int highest_desired_angle = desired_angle_last + max_angle_delta_can;
const int lowest_desired_angle = desired_angle_last - max_angle_delta_can;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
// *** ISO lateral accel limit ***
const float max_curvature = MAX_LATERAL_ACCEL / (fudged_speed * fudged_speed);
const float max_angle = get_angle_from_curvature(max_curvature, curvature_factor, params);
const int max_angle_can = (max_angle * limits.angle_deg_to_can) + 1.;
violation |= max_limit_check(desired_angle, max_angle_can, -max_angle_can);
// *** angle real time rate limit check ***
violation |= rt_angle_rate_limit_check(limits);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
const int max_inactive_angle = CLAMP(angle_meas.max, -limits.max_angle, limits.max_angle) + 1;
const int min_inactive_angle = CLAMP(angle_meas.min, -limits.max_angle, limits.max_angle) - 1;
violation |= max_limit_check(desired_angle, max_inactive_angle, min_inactive_angle);
}
// No angle control allowed when controls are not allowed
if (!(controls_allowed || alka)) {
violation |= steer_control_enabled;
}
// reset to current angle if either controls is not allowed or there's a violation
if (violation || !(controls_allowed || alka)) {
desired_angle_last = CLAMP(angle_meas.values[0], -limits.max_angle, limits.max_angle);
}
return violation;
}