dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

254 lines
11 KiB

import os
import math
import numpy as np
from common.realtime import sec_since_boot, DT_MDL
from common.numpy_fast import interp
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT, MPC_N, CAR_ROTATION_RADIUS
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
from selfdrive.config import Conversions as CV
from common.params import Params
import cereal.messaging as messaging
from cereal import log
LaneChangeState = log.LateralPlan.LaneChangeState
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
LOG_MPC = os.environ.get('LOG_MPC', False)
LANE_CHANGE_SPEED_MIN = 45 * CV.MPH_TO_MS
LANE_CHANGE_TIME_MAX = 10.
DESIRES = {
LaneChangeDirection.none: {
LaneChangeState.off: log.LateralPlan.Desire.none,
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.none,
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.none,
},
LaneChangeDirection.left: {
LaneChangeState.off: log.LateralPlan.Desire.none,
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeLeft,
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeLeft,
},
LaneChangeDirection.right: {
LaneChangeState.off: log.LateralPlan.Desire.none,
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeRight,
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeRight,
},
}
class LateralPlanner():
def __init__(self, CP):
self.LP = LanePlanner()
self.last_cloudlog_t = 0
self.steer_rate_cost = CP.steerRateCost
self.setup_mpc()
self.solution_invalid_cnt = 0
self.lane_change_enabled = Params().get('LaneChangeEnabled') == b'1'
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
self.lane_change_timer = 0.0
self.lane_change_ll_prob = 1.0
self.prev_one_blinker = False
self.desire = log.LateralPlan.Desire.none
self.path_xyz = np.zeros((TRAJECTORY_SIZE,3))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
4 years ago
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros(TRAJECTORY_SIZE)
def setup_mpc(self):
self.libmpc = libmpc_py.libmpc
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, self.steer_rate_cost)
self.mpc_solution = libmpc_py.ffi.new("log_t *")
self.cur_state = libmpc_py.ffi.new("state_t *")
self.cur_state[0].x = 0.0
self.cur_state[0].y = 0.0
self.cur_state[0].psi = 0.0
self.cur_state[0].curvature = 0.0
self.angle_steers_des = 0.0
self.angle_steers_des_mpc = 0.0
self.angle_steers_des_time = 0.0
def update(self, sm, CP, VM):
v_ego = sm['carState'].vEgo
active = sm['controlsState'].active
steering_wheel_angle_offset_deg = sm['liveParameters'].angleOffset
steering_wheel_angle_deg = sm['carState'].steeringAngle
# Update vehicle model
x = max(sm['liveParameters'].stiffnessFactor, 0.1)
sr = max(sm['liveParameters'].steerRatio, 0.1)
VM.update_params(x, sr)
curvature_factor = VM.curvature_factor(v_ego)
measured_curvature = -curvature_factor * math.radians(steering_wheel_angle_deg - steering_wheel_angle_offset_deg) / VM.sR
md = sm['modelV2']
self.LP.parse_model(sm['modelV2'])
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = list(md.orientation.z)
# Lane change logic
one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
if sm['carState'].leftBlinker:
self.lane_change_direction = LaneChangeDirection.left
elif sm['carState'].rightBlinker:
self.lane_change_direction = LaneChangeDirection.right
if (not active) or (self.lane_change_timer > LANE_CHANGE_TIME_MAX) or (not self.lane_change_enabled):
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
else:
torque_applied = sm['carState'].steeringPressed and \
((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
(sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))
blindspot_detected = ((sm['carState'].leftBlindspot and self.lane_change_direction == LaneChangeDirection.left) or
(sm['carState'].rightBlindspot and self.lane_change_direction == LaneChangeDirection.right))
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
# State transitions
# off
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
self.lane_change_state = LaneChangeState.preLaneChange
self.lane_change_ll_prob = 1.0
# pre
elif self.lane_change_state == LaneChangeState.preLaneChange:
if not one_blinker or below_lane_change_speed:
self.lane_change_state = LaneChangeState.off
elif torque_applied and not blindspot_detected:
self.lane_change_state = LaneChangeState.laneChangeStarting
# starting
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
# fade out over .5s
self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2*DT_MDL, 0.0)
# 98% certainty
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
self.lane_change_state = LaneChangeState.laneChangeFinishing
# finishing
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
# fade in laneline over 1s
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
if one_blinker and self.lane_change_ll_prob > 0.99:
self.lane_change_state = LaneChangeState.preLaneChange
elif self.lane_change_ll_prob > 0.99:
self.lane_change_state = LaneChangeState.off
if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]:
self.lane_change_timer = 0.0
else:
self.lane_change_timer += DT_MDL
self.prev_one_blinker = one_blinker
self.desire = DESIRES[self.lane_change_direction][self.lane_change_state]
# Turn off lanes during lane change
if self.desire == log.LateralPlan.Desire.laneChangeRight or self.desire == log.LateralPlan.Desire.laneChangeLeft:
self.LP.lll_prob *= self.lane_change_ll_prob
self.LP.rll_prob *= self.lane_change_ll_prob
d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
y_pts = np.interp(v_ego * self.t_idxs[:MPC_N+1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:,1])
heading_pts = np.interp(v_ego * self.t_idxs[:MPC_N+1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
self.y_pts = y_pts
assert len(y_pts) == MPC_N + 1
assert len(heading_pts) == MPC_N + 1
self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
float(v_ego),
CAR_ROTATION_RADIUS,
list(y_pts),
list(heading_pts))
# init state for next
self.cur_state.x = 0.0
self.cur_state.y = 0.0
self.cur_state.psi = 0.0
self.cur_state.curvature = interp(DT_MDL, self.t_idxs[:MPC_N+1], self.mpc_solution.curvature)
# TODO this needs more thought, use .2s extra for now to estimate other delays
delay = CP.steerActuatorDelay + .2
next_curvature = interp(delay, self.t_idxs[:MPC_N+1], self.mpc_solution.curvature)
psi = interp(delay, self.t_idxs[:MPC_N+1], self.mpc_solution.psi)
next_curvature_rate = self.mpc_solution.curvature_rate[0]
next_curvature_from_psi = psi/(v_ego*delay)
if psi > self.mpc_solution.curvature[0] * delay * v_ego:
next_curvature = max(next_curvature_from_psi, next_curvature)
else:
next_curvature = min(next_curvature_from_psi, next_curvature)
# reset to current steer angle if not active or overriding
if active:
curvature_desired = next_curvature
desired_curvature_rate = next_curvature_rate
else:
curvature_desired = measured_curvature
desired_curvature_rate = 0.0
# negative sign, controls uses different convention
self.desired_steering_wheel_angle_deg = -float(math.degrees(curvature_desired * VM.sR)/curvature_factor) + steering_wheel_angle_offset_deg
self.desired_steering_wheel_angle_rate_deg = -float(math.degrees(desired_curvature_rate * VM.sR)/curvature_factor)
# Check for infeasable MPC solution
mpc_nans = any(math.isnan(x) for x in self.mpc_solution.curvature)
t = sec_since_boot()
if mpc_nans:
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, CP.steerRateCost)
self.cur_state.curvature = measured_curvature
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
def publish(self, sm, pm):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'liveParameters', 'modelV2'])
plan_send.lateralPlan.laneWidth = float(self.LP.lane_width)
plan_send.lateralPlan.dPathPoints = [float(x) for x in self.y_pts]
plan_send.lateralPlan.lProb = float(self.LP.lll_prob)
plan_send.lateralPlan.rProb = float(self.LP.rll_prob)
plan_send.lateralPlan.dProb = float(self.LP.d_prob)
plan_send.lateralPlan.angleSteers = float(self.desired_steering_wheel_angle_deg)
plan_send.lateralPlan.rateSteers = float(self.desired_steering_wheel_angle_rate_deg)
plan_send.lateralPlan.angleOffset = float(sm['liveParameters'].angleOffsetAverage)
plan_send.lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
plan_send.lateralPlan.desire = self.desire
plan_send.lateralPlan.laneChangeState = self.lane_change_state
plan_send.lateralPlan.laneChangeDirection = self.lane_change_direction
pm.send('lateralPlan', plan_send)
if LOG_MPC:
dat = messaging.new_message('liveMpc')
dat.liveMpc.x = list(self.mpc_solution[0].x)
dat.liveMpc.y = list(self.mpc_solution[0].y)
dat.liveMpc.psi = list(self.mpc_solution[0].psi)
dat.liveMpc.tire_angle = list(self.mpc_solution[0].tire_angle)
dat.liveMpc.cost = self.mpc_solution[0].cost
pm.send('liveMpc', dat)