dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

98 lines
3.7 KiB

import numpy as np
from cereal import log
from common.filter_simple import FirstOrderFilter
from common.numpy_fast import interp
from common.realtime import DT_MDL
from system.swaglog import cloudlog
TRAJECTORY_SIZE = 33
# camera offset is meters from center car to camera
# model path is in the frame of the camera
bigmodel (#23684) * Added wide cam vipc client and bigmodel transform logic * Added wide_frame to ModelState, should still work normally * Refactored image input into addImage method, should still work normally * Updated thneed/compile.cc * Bigmodel, untested: 44f83118-b375-4d4c-ae12-2017124f0cf4/200 * Have to initialize extra buffer in SNPEModel * Default paramater value in the wrong place I think * Move USE_EXTRA to SConscript * New model: 6c34d59a-acc3-4877-84bd-904c10745ba6/250 * move use extra check to runtime, not on C2 * this is always true * more C2 checks * log if frames are out of sync * more logging on no frame * store in pointer * print sof * add sync logic * log based on sof difference as well * keep both models * less assumptions * define above thneed * typo * simplify * no need for second client is main is already wide * more comments update * no optional reference * more logging to debug lags * add to release files * both defines * New model: 6831a77f-2574-4bfb-8077-79b0972a2771/950 * Path offset no longer relevant * Remove duplicate execute * Moved bigmodel back to big_supercombo.dlc * add wide vipc stream * Tici must be tici * Needs state too * add wide cam support to model replay * handle syncing better * ugh, c2 * print that * handle ecam lag * skip first one * so close * update refs Co-authored-by: mitchellgoffpc <mitchellgoffpc@gmail.com> Co-authored-by: Harald Schafer <harald.the.engineer@gmail.com> Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com> Co-authored-by: Comma Device <device@comma.ai>
3 years ago
PATH_OFFSET = 0.00
CAMERA_OFFSET = 0.04
class LanePlanner:
def __init__(self, wide_camera=False):
4 years ago
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL)
self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL)
self.lane_width = 3.7
self.lll_prob = 0.
self.rll_prob = 0.
self.d_prob = 0.
self.lll_std = 0.
self.rll_std = 0.
self.l_lane_change_prob = 0.
self.r_lane_change_prob = 0.
self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET
self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET
def parse_model(self, md):
lane_lines = md.laneLines
if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
# left and right ll x is the same
self.ll_x = lane_lines[1].x
self.lll_y = np.array(lane_lines[1].y) + self.camera_offset
self.rll_y = np.array(lane_lines[2].y) + self.camera_offset
self.lll_prob = md.laneLineProbs[1]
self.rll_prob = md.laneLineProbs[2]
self.lll_std = md.laneLineStds[1]
self.rll_std = md.laneLineStds[2]
desire_state = md.meta.desireState
if len(desire_state):
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
def get_d_path(self, v_ego, path_t, path_xyz):
5 years ago
# Reduce reliance on lanelines that are too far apart or
# will be in a few seconds
path_xyz[:, 1] += self.path_offset
l_prob, r_prob = self.lll_prob, self.rll_prob
width_pts = self.rll_y - self.lll_y
prob_mods = []
for t_check in (0.0, 1.5, 3.0):
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
5 years ago
# Reduce reliance on uncertain lanelines
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
5 years ago
# Find current lanewidth
self.lane_width_certainty.update(l_prob * r_prob)
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
self.lane_width_estimate.update(current_lane_width)
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \
(1 - self.lane_width_certainty.x) * speed_lane_width
clipped_lane_width = min(4.0, self.lane_width)
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
self.d_prob = l_prob + r_prob - l_prob * r_prob
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
safe_idxs = np.isfinite(self.ll_t)
if safe_idxs[0]:
lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs])
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
else:
cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring")
return path_xyz