dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

146 lines
5.5 KiB

import time
import datetime
import threading
import random
from statistics import mean
from cereal import log
PANDA_OUTPUT_VOLTAGE = 5.28
# Parameters
def get_battery_capacity():
return _read_param("/sys/class/power_supply/battery/capacity", int)
def get_battery_status():
# This does not correspond with actual charging or not.
# If a USB cable is plugged in, it responds with 'Charging', even when charging is disabled
return _read_param("/sys/class/power_supply/battery/status", lambda x: x.strip(), '')
def get_battery_current():
return _read_param("/sys/class/power_supply/battery/current_now", int)
def get_battery_voltage():
return _read_param("/sys/class/power_supply/battery/voltage_now", int)
def get_usb_present():
return _read_param("/sys/class/power_supply/usb/present", lambda x: bool(int(x)), False)
def get_battery_charging():
# This does correspond with actually charging
return _read_param("/sys/class/power_supply/battery/charge_type", lambda x: x.strip() != "N/A", False)
def set_battery_charging(on):
with open('/sys/class/power_supply/battery/charging_enabled', 'w') as f:
f.write(f"{1 if on else 0}\n")
# Helpers
def _read_param(path, parser, default=0):
try:
with open(path) as f:
return parser(f.read())
except Exception:
return default
def panda_current_to_actual_current(panda_current):
# From white/grey panda schematic
return (3.3 - (panda_current * 3.3 / 4096)) / 8.25
class PowerMonitoring:
def __init__(self):
self.last_measurement_time = None # Used for integration delta
self.power_used_uWh = 0 # Integrated power usage in uWh since going into offroad
self.next_pulsed_measurement_time = None
self.integration_lock = threading.Lock()
# Calculation tick
def calculate(self, health):
try:
now = time.time()
# Check that time is valid
if datetime.datetime.fromtimestamp(now).year < 2019:
return
# Only integrate when there is no ignition
# If health is None, we're probably not in a car, so we don't care
if health == None or (health.health.ignitionLine or health.health.ignitionCan):
self.last_measurement_time = None
self.power_used_uWh = 0
return
# First measurement, set integration time
if self.last_measurement_time == None:
self.last_measurement_time = now
return
# Get current power draw somehow
current_power = 0
if get_battery_status() == 'Discharging':
# If the battery is discharging, we can use this measurement
# On C2: this is low by about 10-15%, probably mostly due to UNO draw not being factored in
current_power = ((get_battery_voltage() / 1000000) * (get_battery_current() / 1000000))
elif (health.health.hwType in [log.HealthData.HwType.whitePanda, log.HealthData.HwType.greyPanda]) and (health.health.current > 1):
# If white/grey panda, use the integrated current measurements if the measurement is not 0
# If the measurement is 0, the current is 400mA or greater, and out of the measurement range of the panda
# This seems to be accurate to about 5%
current_power = (PANDA_OUTPUT_VOLTAGE * panda_current_to_actual_current(health.health.current))
elif (self.next_pulsed_measurement_time != None) and (self.next_pulsed_measurement_time <= now):
# TODO: Figure out why this is off by a factor of 3/4???
FUDGE_FACTOR = 1.33
# Turn off charging for about 10 sec in a thread that does not get killed on SIGINT, and perform measurement here to avoid blocking thermal
def perform_pulse_measurement(now):
try:
set_battery_charging(False)
time.sleep(5)
# Measure for a few sec to get a good average
voltages = []
currents = []
for i in range(6):
voltages.append(get_battery_voltage())
currents.append(get_battery_current())
time.sleep(1)
current_power = ((mean(voltages) / 1000000) * (mean(currents) / 1000000))
self._perform_integration(now, current_power * FUDGE_FACTOR)
# Enable charging again
set_battery_charging(True)
except Exception as e:
print("Pulsed power measurement failed:", str(e))
# Start pulsed measurement and return
threading.Thread(target=perform_pulse_measurement, args=(now,)).start()
self.next_pulsed_measurement_time = None
return
elif self.next_pulsed_measurement_time == None:
# On a charging EON with black panda, or drawing more than 400mA out of a white/grey one
# Only way to get the power draw is to turn off charging for a few sec and check what the discharging rate is
# We shouldn't do this very often, so make sure it has been some long-ish random time interval
self.next_pulsed_measurement_time = now + random.randint(120, 180)
return
else:
# Do nothing
return
# Do the integration
self._perform_integration(now, current_power)
except Exception as e:
print("Power monitoring calculation failed:", str(e))
def _perform_integration(self, t, current_power):
self.integration_lock.acquire()
integration_time_h = (t - self.last_measurement_time) / 3600
self.power_used_uWh += (current_power * 1000000) * integration_time_h
self.last_measurement_time = t
self.integration_lock.release()
# Get the power usage
def get_power_used(self):
return int(self.power_used_uWh)