You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					132 lines
				
				4.8 KiB
			
		
		
			
		
	
	
					132 lines
				
				4.8 KiB
			| 
								 
											4 years ago
										 
									 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
							 | 
						||
| 
								 | 
							
								# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
							 | 
						||
| 
								 | 
							
								# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
							 | 
						||
| 
								 | 
							
								# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# This file is part of acados.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# The 2-Clause BSD License
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								# modification, are permitted provided that the following conditions are met:
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# 1. Redistributions of source code must retain the above copyright notice,
							 | 
						||
| 
								 | 
							
								# this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# 2. Redistributions in binary form must reproduce the above copyright notice,
							 | 
						||
| 
								 | 
							
								# this list of conditions and the following disclaimer in the documentation
							 | 
						||
| 
								 | 
							
								# and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
							 | 
						||
| 
								 | 
							
								# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
							 | 
						||
| 
								 | 
							
								# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
							 | 
						||
| 
								 | 
							
								# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
							 | 
						||
| 
								 | 
							
								# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
							 | 
						||
| 
								 | 
							
								# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
							 | 
						||
| 
								 | 
							
								# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
							 | 
						||
| 
								 | 
							
								# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
							 | 
						||
| 
								 | 
							
								# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
							 | 
						||
| 
								 | 
							
								# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
							 | 
						||
| 
								 | 
							
								# POSSIBILITY OF SUCH DAMAGE.;
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import os
							 | 
						||
| 
								 | 
							
								from casadi import *
							 | 
						||
| 
								 | 
							
								from .utils import ALLOWED_CASADI_VERSIONS, is_empty, casadi_version_warning
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_gnsf( model, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_version = CasadiMeta.version()
							 | 
						||
| 
								 | 
							
								    casadi_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								    if casadi_version not in (ALLOWED_CASADI_VERSIONS):
							 | 
						||
| 
								 | 
							
								        casadi_version_warning(casadi_version)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    model_name = model.name
							 | 
						||
| 
								 | 
							
								    code_export_dir = opts["code_export_directory"]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up directory
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(code_export_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(code_export_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    os.chdir(code_export_dir)
							 | 
						||
| 
								 | 
							
								    model_dir = model_name + '_model'
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(model_dir):
							 | 
						||
| 
								 | 
							
								        os.mkdir(model_dir)
							 | 
						||
| 
								 | 
							
								    model_dir_location = './' + model_dir
							 | 
						||
| 
								 | 
							
								    os.chdir(model_dir_location)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # obtain gnsf dimensions
							 | 
						||
| 
								 | 
							
								    get_matrices_fun = model.get_matrices_fun
							 | 
						||
| 
								 | 
							
								    phi_fun = model.phi_fun
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    size_gnsf_A = get_matrices_fun.size_out(0)
							 | 
						||
| 
								 | 
							
								    gnsf_nx1 = size_gnsf_A[1]
							 | 
						||
| 
								 | 
							
								    gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
							 | 
						||
| 
								 | 
							
								    gnsf_nuhat = max(phi_fun.size_in(1))
							 | 
						||
| 
								 | 
							
								    gnsf_ny = max(phi_fun.size_in(0))
							 | 
						||
| 
								 | 
							
								    gnsf_nout = max(phi_fun.size_out(0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up expressions
							 | 
						||
| 
								 | 
							
								    # if the model uses MX because of cost/constraints
							 | 
						||
| 
								 | 
							
								    # the DAE can be exported as SX -> detect GNSF in Matlab
							 | 
						||
| 
								 | 
							
								    # -> evaluated SX GNSF functions with MX.
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if isinstance(u, casadi.MX):
							 | 
						||
| 
								 | 
							
								        symbol = MX.sym
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        symbol = SX.sym
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = symbol("y", gnsf_ny, 1)
							 | 
						||
| 
								 | 
							
								    uhat = symbol("uhat", gnsf_nuhat, 1)
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    x1 = symbol("gnsf_x1", gnsf_nx1, 1)
							 | 
						||
| 
								 | 
							
								    x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
							 | 
						||
| 
								 | 
							
								    z1 = symbol("gnsf_z1", gnsf_nz1, 1)
							 | 
						||
| 
								 | 
							
								    dummy = symbol("gnsf_dummy", 1, 1)
							 | 
						||
| 
								 | 
							
								    empty_var = symbol("gnsf_empty_var", 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## generate C code
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_fun'
							 | 
						||
| 
								 | 
							
								    phi_fun_ = Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
							 | 
						||
| 
								 | 
							
								    phi_fun_.generate(fun_name, casadi_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_fun_jac_y'
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y = model.phi_fun_jac_y
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y_ = Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y_.generate(fun_name, casadi_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_jac_y_uhat'
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat = model.phi_jac_y_uhat
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat_ = Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat_.generate(fun_name, casadi_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # avoid codegeneration issue
							 | 
						||
| 
								 | 
							
								    if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
							 | 
						||
| 
								 | 
							
								        f_lo_fun_jac_x1k1uz_eval = [empty_var]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_ = Function(fun_name, [x1, x1dot, z1, u, p],
							 | 
						||
| 
								 | 
							
								                 f_lo_fun_jac_x1k1uz_eval)
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_get_matrices_fun'
							 | 
						||
| 
								 | 
							
								    get_matrices_fun_ = Function(fun_name, [dummy], get_matrices_fun(1))
							 | 
						||
| 
								 | 
							
								    get_matrices_fun_.generate(fun_name, casadi_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # remove fields for json dump
							 | 
						||
| 
								 | 
							
								    del model.phi_fun
							 | 
						||
| 
								 | 
							
								    del model.phi_fun_jac_y
							 | 
						||
| 
								 | 
							
								    del model.phi_jac_y_uhat
							 | 
						||
| 
								 | 
							
								    del model.f_lo_fun_jac_x1k1uz
							 | 
						||
| 
								 | 
							
								    del model.get_matrices_fun
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 |