|  |  |  | import math
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.pid import PIController
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.lateral_mpc import libmpc_py
 | 
					
						
							|  |  |  | from common.numpy_fast import interp
 | 
					
						
							|  |  |  | from common.realtime import sec_since_boot
 | 
					
						
							|  |  |  | from selfdrive.swaglog import cloudlog
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # 100ms is a rule of thumb estimation of lag from image processing to actuator command
 | 
					
						
							|  |  |  | ACTUATORS_DELAY = 0.1
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | _DT = 0.01    # 100Hz
 | 
					
						
							|  |  |  | _DT_MPC = 0.05  # 20Hz
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_states_after_delay(states, v_ego, steer_angle, curvature_factor, steer_ratio):
 | 
					
						
							|  |  |  |   states[0].x = v_ego * ACTUATORS_DELAY
 | 
					
						
							|  |  |  |   states[0].psi = v_ego * curvature_factor * math.radians(steer_angle) / steer_ratio * ACTUATORS_DELAY
 | 
					
						
							|  |  |  |   return states
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_steer_max(CP, v_ego):
 | 
					
						
							|  |  |  |   return interp(v_ego, CP.steerMaxBP, CP.steerMaxV)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class LatControl(object):
 | 
					
						
							|  |  |  |   def __init__(self, VM):
 | 
					
						
							|  |  |  |     self.pid = PIController(VM.CP.steerKp, VM.CP.steerKi, k_f=VM.CP.steerKf, pos_limit=1.0)
 | 
					
						
							|  |  |  |     self.last_cloudlog_t = 0.0
 | 
					
						
							|  |  |  |     self.setup_mpc(VM.CP.steerRateCost)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def setup_mpc(self, steer_rate_cost):
 | 
					
						
							|  |  |  |     self.libmpc = libmpc_py.libmpc
 | 
					
						
							|  |  |  |     self.libmpc.init(steer_rate_cost)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.mpc_solution = libmpc_py.ffi.new("log_t *")
 | 
					
						
							|  |  |  |     self.cur_state = libmpc_py.ffi.new("state_t *")
 | 
					
						
							|  |  |  |     self.mpc_updated = False
 | 
					
						
							|  |  |  |     self.cur_state[0].x = 0.0
 | 
					
						
							|  |  |  |     self.cur_state[0].y = 0.0
 | 
					
						
							|  |  |  |     self.cur_state[0].psi = 0.0
 | 
					
						
							|  |  |  |     self.cur_state[0].delta = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.last_mpc_ts = 0.0
 | 
					
						
							|  |  |  |     self.angle_steers_des = 0.0
 | 
					
						
							|  |  |  |     self.angle_steers_des_mpc = 0.0
 | 
					
						
							|  |  |  |     self.angle_steers_des_prev = 0.0
 | 
					
						
							|  |  |  |     self.angle_steers_des_time = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def reset(self):
 | 
					
						
							|  |  |  |     self.pid.reset()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, active, v_ego, angle_steers, steer_override, d_poly, angle_offset, VM, PL):
 | 
					
						
							|  |  |  |     cur_time = sec_since_boot()
 | 
					
						
							|  |  |  |     self.mpc_updated = False
 | 
					
						
							|  |  |  |     if self.last_mpc_ts < PL.last_md_ts:
 | 
					
						
							|  |  |  |       self.last_mpc_ts = PL.last_md_ts
 | 
					
						
							|  |  |  |       self.angle_steers_des_prev = self.angle_steers_des_mpc
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       curvature_factor = VM.curvature_factor(v_ego)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       l_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.l_poly))
 | 
					
						
							|  |  |  |       r_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.r_poly))
 | 
					
						
							|  |  |  |       p_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.p_poly))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # account for actuation delay
 | 
					
						
							|  |  |  |       self.cur_state = calc_states_after_delay(self.cur_state, v_ego, angle_steers, curvature_factor, VM.CP.steerRatio)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
 | 
					
						
							|  |  |  |       self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
 | 
					
						
							|  |  |  |                           l_poly, r_poly, p_poly,
 | 
					
						
							|  |  |  |                           PL.PP.l_prob, PL.PP.r_prob, PL.PP.p_prob, curvature_factor, v_ego_mpc, PL.PP.lane_width)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       delta_desired = self.mpc_solution[0].delta[1]
 | 
					
						
							|  |  |  |       self.cur_state[0].delta = delta_desired
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       self.angle_steers_des_mpc = float(math.degrees(delta_desired * VM.CP.steerRatio) + angle_offset)
 | 
					
						
							|  |  |  |       self.angle_steers_des_time = cur_time
 | 
					
						
							|  |  |  |       self.mpc_updated = True
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #  Check for infeasable MPC solution
 | 
					
						
							|  |  |  |       nans = np.any(np.isnan(list(self.mpc_solution[0].delta)))
 | 
					
						
							|  |  |  |       t = sec_since_boot()
 | 
					
						
							|  |  |  |       if nans:
 | 
					
						
							|  |  |  |         self.libmpc.init(VM.CP.steerRateCost)
 | 
					
						
							|  |  |  |         self.cur_state[0].delta = math.radians(angle_steers) / VM.CP.steerRatio
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if t > self.last_cloudlog_t + 5.0:
 | 
					
						
							|  |  |  |           self.last_cloudlog_t = t
 | 
					
						
							|  |  |  |           cloudlog.warning("Lateral mpc - nan: True")
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if v_ego < 0.3 or not active:
 | 
					
						
							|  |  |  |       output_steer = 0.0
 | 
					
						
							|  |  |  |       self.pid.reset()
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       # TODO: ideally we should interp, but for tuning reasons we keep the mpc solution
 | 
					
						
							|  |  |  |       # constant for 0.05s.
 | 
					
						
							|  |  |  |       #dt = min(cur_time - self.angle_steers_des_time, _DT_MPC + _DT) + _DT  # no greater than dt mpc + dt, to prevent too high extraps
 | 
					
						
							|  |  |  |       #self.angle_steers_des = self.angle_steers_des_prev + (dt / _DT_MPC) * (self.angle_steers_des_mpc - self.angle_steers_des_prev)
 | 
					
						
							|  |  |  |       self.angle_steers_des = self.angle_steers_des_mpc
 | 
					
						
							|  |  |  |       steers_max = get_steer_max(VM.CP, v_ego)
 | 
					
						
							|  |  |  |       self.pid.pos_limit = steers_max
 | 
					
						
							|  |  |  |       self.pid.neg_limit = -steers_max
 | 
					
						
							|  |  |  |       steer_feedforward = self.angle_steers_des * v_ego**2  # proportional to realigning tire momentum (~ lateral accel)
 | 
					
						
							|  |  |  |       output_steer = self.pid.update(self.angle_steers_des, angle_steers, check_saturation=(v_ego > 10), override=steer_override, feedforward=steer_feedforward)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.sat_flag = self.pid.saturated
 | 
					
						
							|  |  |  |     return output_steer
 |