You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
602 lines
19 KiB
602 lines
19 KiB
6 years ago
|
// -*- coding: utf-8
|
||
|
// vim: set fileencoding=utf-8
|
||
|
|
||
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
|
||
|
#define EIGEN_HYBRIDNONLINEARSOLVER_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
namespace HybridNonLinearSolverSpace {
|
||
|
enum Status {
|
||
|
Running = -1,
|
||
|
ImproperInputParameters = 0,
|
||
|
RelativeErrorTooSmall = 1,
|
||
|
TooManyFunctionEvaluation = 2,
|
||
|
TolTooSmall = 3,
|
||
|
NotMakingProgressJacobian = 4,
|
||
|
NotMakingProgressIterations = 5,
|
||
|
UserAsked = 6
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \ingroup NonLinearOptimization_Module
|
||
|
* \brief Finds a zero of a system of n
|
||
|
* nonlinear functions in n variables by a modification of the Powell
|
||
|
* hybrid method ("dogleg").
|
||
|
*
|
||
|
* The user must provide a subroutine which calculates the
|
||
|
* functions. The Jacobian is either provided by the user, or approximated
|
||
|
* using a forward-difference method.
|
||
|
*
|
||
|
*/
|
||
|
template<typename FunctorType, typename Scalar=double>
|
||
|
class HybridNonLinearSolver
|
||
|
{
|
||
|
public:
|
||
|
typedef DenseIndex Index;
|
||
|
|
||
|
HybridNonLinearSolver(FunctorType &_functor)
|
||
|
: functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
|
||
|
|
||
|
struct Parameters {
|
||
|
Parameters()
|
||
|
: factor(Scalar(100.))
|
||
|
, maxfev(1000)
|
||
|
, xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
|
||
|
, nb_of_subdiagonals(-1)
|
||
|
, nb_of_superdiagonals(-1)
|
||
|
, epsfcn(Scalar(0.)) {}
|
||
|
Scalar factor;
|
||
|
Index maxfev; // maximum number of function evaluation
|
||
|
Scalar xtol;
|
||
|
Index nb_of_subdiagonals;
|
||
|
Index nb_of_superdiagonals;
|
||
|
Scalar epsfcn;
|
||
|
};
|
||
|
typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
|
||
|
typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
|
||
|
/* TODO: if eigen provides a triangular storage, use it here */
|
||
|
typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
|
||
|
|
||
|
HybridNonLinearSolverSpace::Status hybrj1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
|
||
|
);
|
||
|
|
||
|
HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
|
||
|
HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
|
||
|
HybridNonLinearSolverSpace::Status solve(FVectorType &x);
|
||
|
|
||
|
HybridNonLinearSolverSpace::Status hybrd1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
|
||
|
);
|
||
|
|
||
|
HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
|
||
|
HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
|
||
|
HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
|
||
|
|
||
|
void resetParameters(void) { parameters = Parameters(); }
|
||
|
Parameters parameters;
|
||
|
FVectorType fvec, qtf, diag;
|
||
|
JacobianType fjac;
|
||
|
UpperTriangularType R;
|
||
|
Index nfev;
|
||
|
Index njev;
|
||
|
Index iter;
|
||
|
Scalar fnorm;
|
||
|
bool useExternalScaling;
|
||
|
private:
|
||
|
FunctorType &functor;
|
||
|
Index n;
|
||
|
Scalar sum;
|
||
|
bool sing;
|
||
|
Scalar temp;
|
||
|
Scalar delta;
|
||
|
bool jeval;
|
||
|
Index ncsuc;
|
||
|
Scalar ratio;
|
||
|
Scalar pnorm, xnorm, fnorm1;
|
||
|
Index nslow1, nslow2;
|
||
|
Index ncfail;
|
||
|
Scalar actred, prered;
|
||
|
FVectorType wa1, wa2, wa3, wa4;
|
||
|
|
||
|
HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol
|
||
|
)
|
||
|
{
|
||
|
n = x.size();
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || tol < 0.)
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
|
||
|
resetParameters();
|
||
|
parameters.maxfev = 100*(n+1);
|
||
|
parameters.xtol = tol;
|
||
|
diag.setConstant(n, 1.);
|
||
|
useExternalScaling = true;
|
||
|
return solve(x);
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
|
||
|
{
|
||
|
n = x.size();
|
||
|
|
||
|
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
|
||
|
fvec.resize(n);
|
||
|
qtf.resize(n);
|
||
|
fjac.resize(n, n);
|
||
|
if (!useExternalScaling)
|
||
|
diag.resize(n);
|
||
|
eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
|
||
|
|
||
|
/* Function Body */
|
||
|
nfev = 0;
|
||
|
njev = 0;
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
if (useExternalScaling)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
if (diag[j] <= 0.)
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
|
||
|
/* evaluate the function at the starting point */
|
||
|
/* and calculate its norm. */
|
||
|
nfev = 1;
|
||
|
if ( functor(x, fvec) < 0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
fnorm = fvec.stableNorm();
|
||
|
|
||
|
/* initialize iteration counter and monitors. */
|
||
|
iter = 1;
|
||
|
ncsuc = 0;
|
||
|
ncfail = 0;
|
||
|
nslow1 = 0;
|
||
|
nslow2 = 0;
|
||
|
|
||
|
return HybridNonLinearSolverSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
|
||
|
eigen_assert(x.size()==n); // check the caller is not cheating us
|
||
|
|
||
|
Index j;
|
||
|
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
|
||
|
|
||
|
jeval = true;
|
||
|
|
||
|
/* calculate the jacobian matrix. */
|
||
|
if ( functor.df(x, fjac) < 0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
++njev;
|
||
|
|
||
|
wa2 = fjac.colwise().blueNorm();
|
||
|
|
||
|
/* on the first iteration and if external scaling is not used, scale according */
|
||
|
/* to the norms of the columns of the initial jacobian. */
|
||
|
if (iter == 1) {
|
||
|
if (!useExternalScaling)
|
||
|
for (j = 0; j < n; ++j)
|
||
|
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
|
||
|
|
||
|
/* on the first iteration, calculate the norm of the scaled x */
|
||
|
/* and initialize the step bound delta. */
|
||
|
xnorm = diag.cwiseProduct(x).stableNorm();
|
||
|
delta = parameters.factor * xnorm;
|
||
|
if (delta == 0.)
|
||
|
delta = parameters.factor;
|
||
|
}
|
||
|
|
||
|
/* compute the qr factorization of the jacobian. */
|
||
|
HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
|
||
|
|
||
|
/* copy the triangular factor of the qr factorization into r. */
|
||
|
R = qrfac.matrixQR();
|
||
|
|
||
|
/* accumulate the orthogonal factor in fjac. */
|
||
|
fjac = qrfac.householderQ();
|
||
|
|
||
|
/* form (q transpose)*fvec and store in qtf. */
|
||
|
qtf = fjac.transpose() * fvec;
|
||
|
|
||
|
/* rescale if necessary. */
|
||
|
if (!useExternalScaling)
|
||
|
diag = diag.cwiseMax(wa2);
|
||
|
|
||
|
while (true) {
|
||
|
/* determine the direction p. */
|
||
|
internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||
|
|
||
|
/* store the direction p and x + p. calculate the norm of p. */
|
||
|
wa1 = -wa1;
|
||
|
wa2 = x + wa1;
|
||
|
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||
|
|
||
|
/* on the first iteration, adjust the initial step bound. */
|
||
|
if (iter == 1)
|
||
|
delta = (std::min)(delta,pnorm);
|
||
|
|
||
|
/* evaluate the function at x + p and calculate its norm. */
|
||
|
if ( functor(wa2, wa4) < 0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
++nfev;
|
||
|
fnorm1 = wa4.stableNorm();
|
||
|
|
||
|
/* compute the scaled actual reduction. */
|
||
|
actred = -1.;
|
||
|
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||
|
actred = 1. - numext::abs2(fnorm1 / fnorm);
|
||
|
|
||
|
/* compute the scaled predicted reduction. */
|
||
|
wa3 = R.template triangularView<Upper>()*wa1 + qtf;
|
||
|
temp = wa3.stableNorm();
|
||
|
prered = 0.;
|
||
|
if (temp < fnorm) /* Computing 2nd power */
|
||
|
prered = 1. - numext::abs2(temp / fnorm);
|
||
|
|
||
|
/* compute the ratio of the actual to the predicted reduction. */
|
||
|
ratio = 0.;
|
||
|
if (prered > 0.)
|
||
|
ratio = actred / prered;
|
||
|
|
||
|
/* update the step bound. */
|
||
|
if (ratio < Scalar(.1)) {
|
||
|
ncsuc = 0;
|
||
|
++ncfail;
|
||
|
delta = Scalar(.5) * delta;
|
||
|
} else {
|
||
|
ncfail = 0;
|
||
|
++ncsuc;
|
||
|
if (ratio >= Scalar(.5) || ncsuc > 1)
|
||
|
delta = (std::max)(delta, pnorm / Scalar(.5));
|
||
|
if (abs(ratio - 1.) <= Scalar(.1)) {
|
||
|
delta = pnorm / Scalar(.5);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* test for successful iteration. */
|
||
|
if (ratio >= Scalar(1e-4)) {
|
||
|
/* successful iteration. update x, fvec, and their norms. */
|
||
|
x = wa2;
|
||
|
wa2 = diag.cwiseProduct(x);
|
||
|
fvec = wa4;
|
||
|
xnorm = wa2.stableNorm();
|
||
|
fnorm = fnorm1;
|
||
|
++iter;
|
||
|
}
|
||
|
|
||
|
/* determine the progress of the iteration. */
|
||
|
++nslow1;
|
||
|
if (actred >= Scalar(.001))
|
||
|
nslow1 = 0;
|
||
|
if (jeval)
|
||
|
++nslow2;
|
||
|
if (actred >= Scalar(.1))
|
||
|
nslow2 = 0;
|
||
|
|
||
|
/* test for convergence. */
|
||
|
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||
|
return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
|
||
|
|
||
|
/* tests for termination and stringent tolerances. */
|
||
|
if (nfev >= parameters.maxfev)
|
||
|
return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
|
||
|
if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
|
||
|
return HybridNonLinearSolverSpace::TolTooSmall;
|
||
|
if (nslow2 == 5)
|
||
|
return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
|
||
|
if (nslow1 == 10)
|
||
|
return HybridNonLinearSolverSpace::NotMakingProgressIterations;
|
||
|
|
||
|
/* criterion for recalculating jacobian. */
|
||
|
if (ncfail == 2)
|
||
|
break; // leave inner loop and go for the next outer loop iteration
|
||
|
|
||
|
/* calculate the rank one modification to the jacobian */
|
||
|
/* and update qtf if necessary. */
|
||
|
wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
|
||
|
wa2 = fjac.transpose() * wa4;
|
||
|
if (ratio >= Scalar(1e-4))
|
||
|
qtf = wa2;
|
||
|
wa2 = (wa2-wa3)/pnorm;
|
||
|
|
||
|
/* compute the qr factorization of the updated jacobian. */
|
||
|
internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
|
||
|
internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
|
||
|
internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
|
||
|
|
||
|
jeval = false;
|
||
|
}
|
||
|
return HybridNonLinearSolverSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
|
||
|
{
|
||
|
HybridNonLinearSolverSpace::Status status = solveInit(x);
|
||
|
if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
|
||
|
return status;
|
||
|
while (status==HybridNonLinearSolverSpace::Running)
|
||
|
status = solveOneStep(x);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol
|
||
|
)
|
||
|
{
|
||
|
n = x.size();
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || tol < 0.)
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
|
||
|
resetParameters();
|
||
|
parameters.maxfev = 200*(n+1);
|
||
|
parameters.xtol = tol;
|
||
|
|
||
|
diag.setConstant(n, 1.);
|
||
|
useExternalScaling = true;
|
||
|
return solveNumericalDiff(x);
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
|
||
|
{
|
||
|
n = x.size();
|
||
|
|
||
|
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
|
||
|
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
|
||
|
|
||
|
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
|
||
|
qtf.resize(n);
|
||
|
fjac.resize(n, n);
|
||
|
fvec.resize(n);
|
||
|
if (!useExternalScaling)
|
||
|
diag.resize(n);
|
||
|
eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
|
||
|
|
||
|
/* Function Body */
|
||
|
nfev = 0;
|
||
|
njev = 0;
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
if (useExternalScaling)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
if (diag[j] <= 0.)
|
||
|
return HybridNonLinearSolverSpace::ImproperInputParameters;
|
||
|
|
||
|
/* evaluate the function at the starting point */
|
||
|
/* and calculate its norm. */
|
||
|
nfev = 1;
|
||
|
if ( functor(x, fvec) < 0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
fnorm = fvec.stableNorm();
|
||
|
|
||
|
/* initialize iteration counter and monitors. */
|
||
|
iter = 1;
|
||
|
ncsuc = 0;
|
||
|
ncfail = 0;
|
||
|
nslow1 = 0;
|
||
|
nslow2 = 0;
|
||
|
|
||
|
return HybridNonLinearSolverSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
using std::abs;
|
||
|
|
||
|
assert(x.size()==n); // check the caller is not cheating us
|
||
|
|
||
|
Index j;
|
||
|
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
|
||
|
|
||
|
jeval = true;
|
||
|
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
|
||
|
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
|
||
|
|
||
|
/* calculate the jacobian matrix. */
|
||
|
if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
|
||
|
|
||
|
wa2 = fjac.colwise().blueNorm();
|
||
|
|
||
|
/* on the first iteration and if external scaling is not used, scale according */
|
||
|
/* to the norms of the columns of the initial jacobian. */
|
||
|
if (iter == 1) {
|
||
|
if (!useExternalScaling)
|
||
|
for (j = 0; j < n; ++j)
|
||
|
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
|
||
|
|
||
|
/* on the first iteration, calculate the norm of the scaled x */
|
||
|
/* and initialize the step bound delta. */
|
||
|
xnorm = diag.cwiseProduct(x).stableNorm();
|
||
|
delta = parameters.factor * xnorm;
|
||
|
if (delta == 0.)
|
||
|
delta = parameters.factor;
|
||
|
}
|
||
|
|
||
|
/* compute the qr factorization of the jacobian. */
|
||
|
HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
|
||
|
|
||
|
/* copy the triangular factor of the qr factorization into r. */
|
||
|
R = qrfac.matrixQR();
|
||
|
|
||
|
/* accumulate the orthogonal factor in fjac. */
|
||
|
fjac = qrfac.householderQ();
|
||
|
|
||
|
/* form (q transpose)*fvec and store in qtf. */
|
||
|
qtf = fjac.transpose() * fvec;
|
||
|
|
||
|
/* rescale if necessary. */
|
||
|
if (!useExternalScaling)
|
||
|
diag = diag.cwiseMax(wa2);
|
||
|
|
||
|
while (true) {
|
||
|
/* determine the direction p. */
|
||
|
internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||
|
|
||
|
/* store the direction p and x + p. calculate the norm of p. */
|
||
|
wa1 = -wa1;
|
||
|
wa2 = x + wa1;
|
||
|
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||
|
|
||
|
/* on the first iteration, adjust the initial step bound. */
|
||
|
if (iter == 1)
|
||
|
delta = (std::min)(delta,pnorm);
|
||
|
|
||
|
/* evaluate the function at x + p and calculate its norm. */
|
||
|
if ( functor(wa2, wa4) < 0)
|
||
|
return HybridNonLinearSolverSpace::UserAsked;
|
||
|
++nfev;
|
||
|
fnorm1 = wa4.stableNorm();
|
||
|
|
||
|
/* compute the scaled actual reduction. */
|
||
|
actred = -1.;
|
||
|
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||
|
actred = 1. - numext::abs2(fnorm1 / fnorm);
|
||
|
|
||
|
/* compute the scaled predicted reduction. */
|
||
|
wa3 = R.template triangularView<Upper>()*wa1 + qtf;
|
||
|
temp = wa3.stableNorm();
|
||
|
prered = 0.;
|
||
|
if (temp < fnorm) /* Computing 2nd power */
|
||
|
prered = 1. - numext::abs2(temp / fnorm);
|
||
|
|
||
|
/* compute the ratio of the actual to the predicted reduction. */
|
||
|
ratio = 0.;
|
||
|
if (prered > 0.)
|
||
|
ratio = actred / prered;
|
||
|
|
||
|
/* update the step bound. */
|
||
|
if (ratio < Scalar(.1)) {
|
||
|
ncsuc = 0;
|
||
|
++ncfail;
|
||
|
delta = Scalar(.5) * delta;
|
||
|
} else {
|
||
|
ncfail = 0;
|
||
|
++ncsuc;
|
||
|
if (ratio >= Scalar(.5) || ncsuc > 1)
|
||
|
delta = (std::max)(delta, pnorm / Scalar(.5));
|
||
|
if (abs(ratio - 1.) <= Scalar(.1)) {
|
||
|
delta = pnorm / Scalar(.5);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* test for successful iteration. */
|
||
|
if (ratio >= Scalar(1e-4)) {
|
||
|
/* successful iteration. update x, fvec, and their norms. */
|
||
|
x = wa2;
|
||
|
wa2 = diag.cwiseProduct(x);
|
||
|
fvec = wa4;
|
||
|
xnorm = wa2.stableNorm();
|
||
|
fnorm = fnorm1;
|
||
|
++iter;
|
||
|
}
|
||
|
|
||
|
/* determine the progress of the iteration. */
|
||
|
++nslow1;
|
||
|
if (actred >= Scalar(.001))
|
||
|
nslow1 = 0;
|
||
|
if (jeval)
|
||
|
++nslow2;
|
||
|
if (actred >= Scalar(.1))
|
||
|
nslow2 = 0;
|
||
|
|
||
|
/* test for convergence. */
|
||
|
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||
|
return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
|
||
|
|
||
|
/* tests for termination and stringent tolerances. */
|
||
|
if (nfev >= parameters.maxfev)
|
||
|
return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
|
||
|
if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
|
||
|
return HybridNonLinearSolverSpace::TolTooSmall;
|
||
|
if (nslow2 == 5)
|
||
|
return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
|
||
|
if (nslow1 == 10)
|
||
|
return HybridNonLinearSolverSpace::NotMakingProgressIterations;
|
||
|
|
||
|
/* criterion for recalculating jacobian. */
|
||
|
if (ncfail == 2)
|
||
|
break; // leave inner loop and go for the next outer loop iteration
|
||
|
|
||
|
/* calculate the rank one modification to the jacobian */
|
||
|
/* and update qtf if necessary. */
|
||
|
wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
|
||
|
wa2 = fjac.transpose() * wa4;
|
||
|
if (ratio >= Scalar(1e-4))
|
||
|
qtf = wa2;
|
||
|
wa2 = (wa2-wa3)/pnorm;
|
||
|
|
||
|
/* compute the qr factorization of the updated jacobian. */
|
||
|
internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
|
||
|
internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
|
||
|
internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
|
||
|
|
||
|
jeval = false;
|
||
|
}
|
||
|
return HybridNonLinearSolverSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
HybridNonLinearSolverSpace::Status
|
||
|
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
|
||
|
{
|
||
|
HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
|
||
|
if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
|
||
|
return status;
|
||
|
while (status==HybridNonLinearSolverSpace::Running)
|
||
|
status = solveNumericalDiffOneStep(x);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
|
||
|
|
||
|
//vim: ai ts=4 sts=4 et sw=4
|