dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

69 lines
2.4 KiB

import re, string
from collections import Counter
from tinygrad import Tensor
def levenshtein(a, b):
n, m = len(a), len(b)
if n > m:
a, b, n, m = b, a, m, n
current = list(range(n + 1))
for i in range(1, m + 1):
previous, current = current, [i] + [0] * n
for j in range(1, n + 1):
add, delete = previous[j] + 1, current[j - 1] + 1
change = previous[j - 1]
if a[j - 1] != b[i - 1]:
change = change + 1
current[j] = min(add, delete, change)
return current[n]
def word_error_rate(x, y):
scores = words = 0
for h, r in zip(x, y):
h_list = h.split()
r_list = r.split()
words += len(r_list)
scores += levenshtein(h_list, r_list)
return float(scores) / words, float(scores), words
def one_hot(x):
return x.one_hot(3).squeeze(1).permute(0, 4, 1, 2, 3)
def dice_score(prediction, target, channel_axis=1, smooth_nr=1e-6, smooth_dr=1e-6, argmax=True, to_one_hot_x=True):
channel_axis, reduce_axis = 1, tuple(range(2, len(prediction.shape)))
if argmax: prediction = prediction.argmax(axis=channel_axis)
else: prediction = prediction.softmax(axis=channel_axis)
if to_one_hot_x: prediction = one_hot(prediction)
target = one_hot(target)
prediction, target = prediction[:, 1:], target[:, 1:]
assert prediction.shape == target.shape, f"prediction ({prediction.shape}) and target ({target.shape}) shapes do not match"
intersection = (prediction * target).sum(axis=reduce_axis)
target_sum = target.sum(axis=reduce_axis)
prediction_sum = prediction.sum(axis=reduce_axis)
result = (2.0 * intersection + smooth_nr) / (target_sum + prediction_sum + smooth_dr)
return result
def normalize_string(s):
s = "".join(c for c in s.lower() if c not in string.punctuation)
s = re.sub(r'\b(a|an|the)\b', ' ', s)
return " ".join(s.split())
def f1_score(x, y):
xt = normalize_string(x).split()
yt = normalize_string(y).split()
ct = Counter(xt) & Counter(yt)
if (ns := sum(ct.values())) == 0:
return 0.0
p = ns / len(xt)
r = ns / len(yt)
return 2 * p * r / (p + r)
def log_perplexity(logit:Tensor, target:Tensor, ignore_index:int|None=None):
# logit has shape (n_samples, seq_len, vocab_size), target has shape (n_samples, seq_len)
assert logit.ndim == 3, logit.ndim
assert target.ndim == 2, target.ndim
assert logit.shape[:2] == target.shape, f"{logit.shape[:2]=}, {target.shape=}"
log_prob = logit.log_softmax(axis=-1)
return log_prob.transpose(1, 2).nll_loss(target, ignore_index=ignore_index)