dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
14 KiB

from tinygrad import Tensor, Device, Context, GlobalCounters, dtypes
from tinygrad.uop.ops import UOp, Ops, KernelInfo, graph_rewrite, AxisType, PatternMatcher, UPat
from tinygrad.engine.realize import CompiledRunner, ExecItem, get_program
from tinygrad.dtype import AddrSpace
from tinygrad.helpers import getenv, colored, prod, unwrap
from tinygrad.shape.shapetracker import ShapeTracker, View
from tinygrad.shape.view import strides_for_shape
from tinygrad.codegen.opt.kernel import axis_colors
from tinygrad.codegen.opt.swizzler import merge_views, view_left
def to_colored(full_shape, axis_types): return '_'.join([colored(str(s), axis_colors[at]) for s,at in zip(full_shape, axis_types)])
N = 4096
run_count = 5
BN = 128
BM = 128
BK = 8
TN = 4
TM = 4
# NOTE: this is from testgrad
# change reduceop axes and input ShapeTrackers, view gets replaced with a reshape.
# src->r->view --> src->view->r
def swizzle_reduceop(src:UOp, r:UOp, view:UOp):
if r.tag is not None: return None
# confirm the input is in order
# TODO: replace this with a UOp that allows for nothing else then remove this
permute = tuple(i for i in range(len(src.shape)) if i not in r.axis_arg)+r.axis_arg
assert permute == tuple(range(len(permute))), f"reduce axis must already be in order, {permute} isn't"
# append the reduce shape to each of the views
prshape = prod(rshape:=src.shape[-len(r.axis_arg):])
rstrides = strides_for_shape(rshape)
nv = [View.create(v.shape+rshape, tuple(x*prshape for x in v.strides)+rstrides, v.offset*prshape,
v.mask+tuple((0,s) for s in rshape) if v.mask is not None else None) for v in unwrap(view.st).views]
# no reshape required with shrinking REDUCE_AXIS
return UOp(Ops.REDUCE_AXIS, r.dtype, (src.view(ShapeTracker(tuple(nv))),),
(r.arg[0], tuple(range(len(view.shape), len(view.shape) + len(r.axis_arg)))))
pm = PatternMatcher([
(UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r"),), name="view"), swizzle_reduceop),
])
def top_spec_kernel3():
a = Tensor.empty(N,N)
b = Tensor.empty(N,N)
c = a@b
sink = c.schedule()[-1].ast
L = 16
sink = sink.reshape((N//L, L, N//L, L)) #.lift({0:UOp.range(dtypes.int, N//BM, 0), 2:UOp.range(dtypes.int, N//BN, 1)})
sink = graph_rewrite(sink, view_left+pm)
axis_types = (AxisType.GLOBAL, AxisType.LOCAL, AxisType.GLOBAL, AxisType.LOCAL, AxisType.REDUCE)
return sink.replace(arg=KernelInfo(name="top_"+to_colored(sink.full_shape, axis_types), axis_types=axis_types))
def hl_spec_kernel3():
nbIterWaveM = 2
nbIterWaveN = 2
# define buffers
# TODO: remove these views once the defines have a shape
a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1).view(ShapeTracker.from_shape((N,N)))
b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2).view(ShapeTracker.from_shape((N,N))).permute((1,0))
c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0).view(ShapeTracker.from_shape((N,N)))
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM, AddrSpace.LOCAL), arg=0).view(ShapeTracker.from_shape((BK, BM))).permute((1,0))
Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1).view(ShapeTracker.from_shape((BK, BN))).permute((1,0))
A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0).view(ShapeTracker.from_shape((nbIterWaveM * TM,)))
B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1).view(ShapeTracker.from_shape((nbIterWaveN * TN,)))
# shape buffers. TODO: permutes
full_shape = (N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK)
a = a.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, N//BK, BK)).expand(full_shape)
b = b.reshape((1, 1, 1, 1, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK)).expand(full_shape)
c = c.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, 1))
As = As.reshape((1, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, 1, BK)).expand(full_shape)
Bs = Bs.reshape((1, 1, 1, 1, 1, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, BK)).expand(full_shape)
A_col = A_col.reshape((1, nbIterWaveM, 1, TM, 1, 1, 1, 1, 1, 1)).expand(full_shape)
B_row = B_row.reshape((1, 1, 1, 1, 1, nbIterWaveN, 1, TN, 1, 1)).expand(full_shape)
# U1 L2 L3 L4 L5 U6 U7 U9 L10 L11 L12 L13 U14 U15 U17 U18 U19
expanded_shape = (32, 2, 2, 2, 2, 2, 2, 2, 32, 2, 2, 2, 2, 2, 2, 2, 512, 2, 2, 2)
assert len(expanded_shape) == 20
permute_a = list(range(len(expanded_shape)))
permute_b = permute_a[:]
# this makes all the global loads match
# this can also be more simply done by rebinding the RANGEs
# but sadly, rebinding the RANGEs doesn't work to change the order of the local axes
permute_a[17:20] = [11,12,13]
permute_a[11:14] = [17,18,19]
permute_a[7], permute_a[10] = permute_a[10], permute_a[7]
permute_a[2:7] = [3,4,5,6,2]
permute_b[2:16] = [19,9,10,11,17,18,8,2,12,13,14,15,3,4]
permute_b[17:20] = [5,6,7]
a_permute = a.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape)
As_permute = As.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape)
b_permute = b.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape)
Bs_permute = Bs.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape)
#out = (a.load() * b.load()).r(Ops.ADD, (8, 9))
out = (As.load(As_permute.store(a_permute.load())) * Bs.load(Bs_permute.store(b_permute.load()))).r(Ops.ADD, (8, 9))
#out = (A_col.load(A_col.store(As.load(As.store(a.load())))) * B_row.load(B_row.store(Bs.load(Bs.store(b.load()))))).r(Ops.ADD, (8, 9))
axis_types = (
AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST,
AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST,
AxisType.REDUCE, AxisType.REDUCE)
sink = c.store(out).sink(arg=KernelInfo(name="tg_"+to_colored(full_shape, axis_types), axis_types=axis_types))
sink = graph_rewrite(sink, merge_views)
return sink
def hand_spec_kernel3(kernel4=getenv("K4", 0), kernel5=getenv("K5", 0)):
BLOCK_SIZE = 128 if kernel5 else 256
nbWaves = BLOCK_SIZE // 32
WN = 128 if kernel5 else 64
WM = BN * BM // nbWaves // WN
nbWaveX = BN // WN
nbWaveY = BM // WM
threadIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("lidx0", BLOCK_SIZE))
waveIndex = threadIdx_x // 32
waveIdx = waveIndex % nbWaveX
waveIdy = waveIndex // nbWaveX
indexInWave = threadIdx_x % 32
nbThreadXPerWave = 8
nbThreadYPerWave = 4
idxInWave = indexInWave % nbThreadXPerWave
idyInWave = indexInWave // nbThreadXPerWave
nbIterWaveN = WN // (nbThreadXPerWave * TN)
nbIterWaveM = WM // (nbThreadYPerWave * TM)
SUBWN = WN // nbIterWaveN
SUBWM = WM // nbIterWaveM
# Thread mapping to read BKxBN block from A
rAIdx = threadIdx_x % BK
rAIdy = threadIdx_x // BK
# Thread mapping to read BNxBK block from B
rBIdx = threadIdx_x % BN
rBIdy = threadIdx_x // BN
strideReadB = BLOCK_SIZE // BN
strideReadA = BLOCK_SIZE // BK
nbReadsB = BN * BK // BLOCK_SIZE
nbReadsA = BM * BK // BLOCK_SIZE
blockIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx0", N//BN))
blockIdx_y = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx1", N//BM))
a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1)
b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2)
c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0)
A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0)
B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1)
BM_As_stride = (BM+4) if kernel5 else BM
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM_As_stride, AddrSpace.LOCAL), arg=0)
Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1)
c_regs = UOp(Ops.DEFINE_REG, dtypes.float.ptr(TM * nbIterWaveM * TN * nbIterWaveN), arg=2)
i = UOp.range(dtypes.int, c_regs.dtype.size, 16)
init_store = c_regs[i].store(UOp.const(dtypes.float, 0.0), i)
if kernel4:
regA = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsA, AddrSpace.REG), arg=3)
regB = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsB, AddrSpace.REG), arg=4)
# initial load from globals into locals (0)
kId = 0
# load from globals into locals
i = UOp.range(dtypes.int, nbReadsB, 0)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
i = UOp.range(dtypes.int, nbReadsA, 1)
index_x = rAIdx + kId
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
# iterate over the middle chunk
kId_range = UOp.range(dtypes.int, N//BK-1, 2)
kId = kId_range*BK
barrier = UOp.barrier(As_store, Bs_store)
# load from globals into registers (next round)
i = UOp.range(dtypes.int, nbReadsB, 3)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId + BK
regB_store = regB[i].store(b[N * index_y + index_x].load(), i)
i = UOp.range(dtypes.int, nbReadsA, 4)
index_x = rAIdx + kId + BK
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
regA_store = regA[i].store(a[N * index_y + index_x].load(), i)
def inner_loop(first_range, inp_dep=()):
# inner unroll
k = UOp.range(dtypes.int, BK, first_range+0)
# load from locals into registers
iterWave = UOp.range(dtypes.int, nbIterWaveN, first_range+1)
i = UOp.range(dtypes.int, TN, first_range+2)
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(*inp_dep), iterWave, i)
iterWave = UOp.range(dtypes.int, nbIterWaveM, first_range+3)
i = UOp.range(dtypes.int, TM, first_range+4)
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(*inp_dep), iterWave, i)
# do the GEMM math
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, first_range+5)
yt = UOp.range(dtypes.int, TM, first_range+6)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, first_range+7)
xt = UOp.range(dtypes.int, TN, first_range+8)
x = iterWaveN * TN + xt
y = iterWaveM * TM + yt
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
# sketchy, this should end the kId_range but it doesn't
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
iterWaveM, iterWaveN, yt, xt, k)
return sink
# TODO: kId_range should endrange after a barrier
sink = inner_loop(5, (barrier, regB_store, regA_store)).barrier()
# load from registers into locals
i = UOp.range(dtypes.int, nbReadsB, 14)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId + BK
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(regB[i].load(sink), i, kId_range)
i = UOp.range(dtypes.int, nbReadsA, 15)
index_x = rAIdx + kId + BK
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(regA[i].load(sink), i, kId_range)
# final iteration without the copy
sink = inner_loop(16, (UOp.barrier(Bs_store, As_store),))
else:
kId_range = UOp.range(dtypes.int, N//BK, 0)
kId = kId_range*BK
# load from globals into locals
i = UOp.range(dtypes.int, nbReadsB, 1)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
i = UOp.range(dtypes.int, nbReadsA, 2)
index_x = rAIdx + kId
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
barrier = UOp.barrier(As_store, Bs_store)
k = UOp.range(dtypes.int, BK, 3)
# load from locals into registers
iterWave = UOp.range(dtypes.int, nbIterWaveN, 4)
i = UOp.range(dtypes.int, TN, 5)
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(barrier), iterWave, i)
iterWave = UOp.range(dtypes.int, nbIterWaveM, 6)
i = UOp.range(dtypes.int, TM, 7)
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(barrier), iterWave, i)
# do the GEMM math
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 8)
yt = UOp.range(dtypes.int, TM, 9)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 10)
xt = UOp.range(dtypes.int, TN, 12)
x = iterWaveN * TN + xt
y = iterWaveM * TM + yt
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
iterWaveM, iterWaveN, yt, xt, k, kId_range)
# store c_regs into c
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 1000)
yt = UOp.range(dtypes.int, TM, 1001)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 1002)
xt = UOp.range(dtypes.int, TN, 1003)
xOut = blockIdx_x * BN + waveIdx * WN + iterWaveN * SUBWN + TN * idxInWave
yOut = blockIdx_y * BM + waveIdy * WM + iterWaveM * SUBWM + TM * idyInWave
indexC = N * (yOut + yt) + xOut + xt
sink = c[indexC].store(c_regs[TN * nbIterWaveN * (iterWaveM * TM + yt) + (iterWaveN * TN + xt)].load(sink),
iterWaveM, iterWaveN, yt, xt)
return sink.sink(arg=KernelInfo(name="tinygemm"))
if __name__ == "__main__":
HL = getenv("HL")
if HL == 2: hprg = top_spec_kernel3()
elif HL == 1: hprg = hl_spec_kernel3()
else: hprg = hand_spec_kernel3()
prg = get_program(hprg, Device.default.renderer)
print(prg.src)
if getenv("SRC"): exit(0)
hrunner = CompiledRunner(prg)
a = Tensor.randn(N, N).realize()
b = Tensor.randn(N, N).realize()
hc = Tensor.zeros(N, N).contiguous().realize()
GlobalCounters.reset()
with Context(DEBUG=2):
for _ in range(run_count): tc = (a@b).realize()
GlobalCounters.reset()
buffers = [hc.uop.buffer, a.uop.buffer, b.uop.buffer]
ei = ExecItem(hrunner, buffers)
with Context(DEBUG=2):
for _ in range(run_count): ei.run(wait=True)
err = (hc-tc).square().mean().item()
print(f"hrunner {err}")
if err > 1e-06: raise RuntimeError("matmul is wrong!")