dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

182 lines
7.9 KiB

#!/usr/bin/env python3
import os
import zmq
import numpy as np
from bisect import bisect_right
import cereal.messaging as messaging
from selfdrive.swaglog import cloudlog
from common.transformations.orientation import rotations_from_quats, ecef_euler_from_ned, euler2quat, ned_euler_from_ecef, quat2euler
import common.transformations.coordinates as coord
5 years ago
from selfdrive.locationd.kalman.live_kf import LiveKalman, States, initial_x, initial_P_diag
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
os.environ["OMP_NUM_THREADS"] = "1"
class Localizer():
def __init__(self, disabled_logs=[], dog=None):
self.kf = LiveKalman()
self.reset_kalman()
self.max_age = .2 # seconds
self.disabled_logs = disabled_logs
self.week = None
def liveLocationMsg(self, time):
fix = messaging.log.LiveLocationData.new_message()
predicted_state = self.kf.x
fix_ecef = predicted_state[States.ECEF_POS]
fix_pos_geo = coord.ecef2geodetic(fix_ecef)
fix.lat = float(fix_pos_geo[0])
fix.lon = float(fix_pos_geo[1])
fix.alt = float(fix_pos_geo[2])
fix.speed = float(np.linalg.norm(predicted_state[States.ECEF_VELOCITY]))
orientation_ned_euler = ned_euler_from_ecef(fix_ecef, quat2euler(predicted_state[States.ECEF_ORIENTATION]))
fix.roll = float(orientation_ned_euler[0]*180/np.pi)
fix.pitch = float(orientation_ned_euler[1]*180/np.pi)
fix.heading = float(orientation_ned_euler[2]*180/np.pi)
fix.gyro = [float(predicted_state[10]), float(predicted_state[11]), float(predicted_state[12])]
fix.accel = [float(predicted_state[19]), float(predicted_state[20]), float(predicted_state[21])]
local_vel = rotations_from_quats(predicted_state[States.ECEF_ORIENTATION]).T.dot(predicted_state[States.ECEF_VELOCITY])
fix.pitchCalibration = float((np.arctan2(local_vel[2], local_vel[0]))*180/np.pi)
fix.yawCalibration = float((np.arctan2(local_vel[1], local_vel[0]))*180/np.pi)
#fix.imuFrame = [(180/np.pi)*float(predicted_state[23]), (180/np.pi)*float(predicted_state[24]), (180/np.pi)*float(predicted_state[25])]
return fix
def update_kalman(self, time, kind, meas):
idx = bisect_right([x[0] for x in self.observation_buffer], time)
self.observation_buffer.insert(idx, (time, kind, meas))
while self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
if self.filter_ready:
self.kf.predict_and_observe(*self.observation_buffer.pop(0))
else:
self.observation_buffer.pop(0)
def handle_gps(self, log, current_time):
self.converter = coord.LocalCoord.from_geodetic([log.gpsLocationExternal.latitude, log.gpsLocationExternal.longitude, log.gpsLocationExternal.altitude])
fix_ecef = self.converter.ned2ecef([0,0,0])
# TODO initing with bad bearing not allowed, maybe not bad?
if not self.filter_ready and log.gpsLocationExternal.speed > 5:
self.filter_ready = True
initial_ecef = fix_ecef
gps_bearing = log.gpsLocationExternal.bearing*(np.pi/180)
initial_pose_ecef = ecef_euler_from_ned(initial_ecef, [0, 0, gps_bearing])
initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
gps_speed = log.gpsLocationExternal.speed
quat_uncertainty = 0.2**2
initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
5 years ago
initial_state = initial_x
initial_covs_diag = initial_P_diag
initial_state[States.ECEF_POS] = initial_ecef
initial_state[States.ECEF_ORIENTATION] = initial_pose_ecef_quat
initial_state[States.ECEF_VELOCITY] = rotations_from_quats(initial_pose_ecef_quat).dot(np.array([gps_speed, 0, 0]))
initial_covs_diag[States.ECEF_POS_ERR] = 10**2
initial_covs_diag[States.ECEF_ORIENTATION_ERR] = quat_uncertainty
initial_covs_diag[States.ECEF_VELOCITY_ERR] = 1**2
self.kf.init_state(initial_state, covs=np.diag(initial_covs_diag), filter_time=current_time)
print("Filter initialized")
elif self.filter_ready:
self.update_kalman(current_time, ObservationKind.ECEF_POS, fix_ecef)
gps_est_error = np.sqrt((self.kf.x[0] - fix_ecef[0])**2 +
(self.kf.x[1] - fix_ecef[1])**2 +
(self.kf.x[2] - fix_ecef[2])**2)
if gps_est_error > 50:
cloudlog.info("Locationd vs ubloxLocation difference too large, kalman reset")
self.reset_kalman()
def handle_car_state(self, log, current_time):
self.speed_counter += 1
if self.speed_counter % 5==0:
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, log.carState.vEgo)
if log.carState.vEgo == 0:
self.update_kalman(current_time, ObservationKind.NO_ROT, [0, 0, 0])
def handle_cam_odo(self, log, current_time):
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_ROTATION, np.concatenate([log.cameraOdometry.rot,
log.cameraOdometry.rotStd]))
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_TRANSLATION, np.concatenate([log.cameraOdometry.trans,
log.cameraOdometry.transStd]))
def handle_sensors(self, log, current_time):
for sensor_reading in log.sensorEvents:
# TODO does not yet account for double sensor readings in the log
if sensor_reading.type == 4:
self.gyro_counter += 1
if True or self.gyro_counter % 5==0:
if max(abs(self.kf.x[States.IMU_OFFSET])) > 0.07:
print('imu frame angles exceeded, correcting')
self.update_kalman(current_time, ObservationKind.IMU_FRAME, [0, 0, 0])
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-sensor_reading.gyro.v[2], -sensor_reading.gyro.v[1], -sensor_reading.gyro.v[0]])
if sensor_reading.type == 1:
self.acc_counter += 1
if True or self.acc_counter % 5==0:
self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-sensor_reading.acceleration.v[2], -sensor_reading.acceleration.v[1], -sensor_reading.acceleration.v[0]])
def handle_log(self, log):
current_time = 1e-9*log.logMonoTime
typ = log.which
if typ in self.disabled_logs:
return
if typ == "sensorEvents":
self.handle_sensors(log, current_time)
elif typ == "gpsLocationExternal":
self.handle_gps(log, current_time)
elif typ == "carState":
self.handle_car_state(log, current_time)
elif typ == "cameraOdometry":
self.handle_cam_odo(log, current_time)
def reset_kalman(self):
self.filter_time = None
self.filter_ready = False
self.observation_buffer = []
self.converter = None
self.gyro_counter = 0
self.acc_counter = 0
self.speed_counter = 0
def locationd_thread(gctx, addr, disabled_logs=[]):
poller = zmq.Poller()
#carstate = messaging.sub_sock('carState', poller, addr=addr, conflate=True)
gpsLocationExternal = messaging.sub_sock('gpsLocationExternal', poller, addr=addr, conflate=True)
sensorEvents = messaging.sub_sock('sensorEvents', poller, addr=addr, conflate=True)
cameraOdometry = messaging.sub_sock('cameraOdometry', poller, addr=addr, conflate=True)
liveLocation = messaging.pub_sock('liveLocation')
localizer = Localizer(disabled_logs=disabled_logs)
print("init done")
# buffer with all the messages that still need to be input into the kalman
while 1:
polld = poller.poll(timeout=1000)
for sock, mode in polld:
if mode != zmq.POLLIN:
continue
logs = messaging.drain_sock(sock)
for log in logs:
localizer.handle_log(log)
if localizer.filter_ready and log.which == 'ubloxGnss':
msg = messaging.new_message()
msg.logMonoTime = log.logMonoTime
msg.init('liveLocation')
msg.liveLocation = localizer.liveLocationMsg(log.logMonoTime*1e-9)
liveLocation.send(msg.to_bytes())
def main(gctx=None, addr="127.0.0.1"):
locationd_thread(gctx, addr)
if __name__ == "__main__":
main()