|  |  |  | #include "acado_common.h"
 | 
					
						
							|  |  |  | #include "acado_auxiliary_functions.h"
 | 
					
						
							|  |  |  | #include "common/modeldata.h"
 | 
					
						
							|  |  |  | #include <stdio.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define NX          ACADO_NX  /* Number of differential state variables.  */
 | 
					
						
							|  |  |  | #define NXA         ACADO_NXA /* Number of algebraic variables. */
 | 
					
						
							|  |  |  | #define NU          ACADO_NU  /* Number of control inputs. */
 | 
					
						
							|  |  |  | #define NOD         ACADO_NOD  /* Number of online data values. */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define NY          ACADO_NY  /* Number of measurements/references on nodes 0..N - 1. */
 | 
					
						
							|  |  |  | #define NYN         ACADO_NYN /* Number of measurements/references on node N. */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define N           ACADO_N   /* Number of intervals in the horizon. */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ACADOvariables acadoVariables;
 | 
					
						
							|  |  |  | ACADOworkspace acadoWorkspace;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | typedef struct {
 | 
					
						
							|  |  |  |   double x, y, psi, tire_angle, tire_angle_rate;
 | 
					
						
							|  |  |  | } state_t;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | typedef struct {
 | 
					
						
							|  |  |  |   double x[N+1];
 | 
					
						
							|  |  |  |   double y[N+1];
 | 
					
						
							|  |  |  |   double psi[N+1];
 | 
					
						
							|  |  |  |   double tire_angle[N+1];
 | 
					
						
							|  |  |  |   double tire_angle_rate[N];
 | 
					
						
							|  |  |  |   double cost;
 | 
					
						
							|  |  |  | } log_t;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void init_weights(double pathCost, double headingCost, double steerRateCost){
 | 
					
						
							|  |  |  |   int    i;
 | 
					
						
							|  |  |  |   const int STEP_MULTIPLIER = 3.0;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for (i = 0; i < N; i++) {
 | 
					
						
							|  |  |  |     double f = 20 * (T_IDXS[i+1] - T_IDXS[i]);
 | 
					
						
							|  |  |  |     // Setup diagonal entries
 | 
					
						
							|  |  |  |     acadoVariables.W[NY*NY*i + (NY+1)*0] = pathCost * f;
 | 
					
						
							|  |  |  |     acadoVariables.W[NY*NY*i + (NY+1)*1] = headingCost * f;
 | 
					
						
							|  |  |  |     acadoVariables.W[NY*NY*i + (NY+1)*2] = steerRateCost * f;
 | 
					
						
							|  |  |  |   }
 | 
					
						
							|  |  |  |   acadoVariables.WN[(NYN+1)*0] = pathCost * STEP_MULTIPLIER;
 | 
					
						
							|  |  |  |   acadoVariables.WN[(NYN+1)*1] = headingCost * STEP_MULTIPLIER;
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void init(double pathCost, double headingCost, double steerRateCost){
 | 
					
						
							|  |  |  |   acado_initializeSolver();
 | 
					
						
							|  |  |  |   int    i;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* Initialize the states and controls. */
 | 
					
						
							|  |  |  |   for (i = 0; i < NX * (N + 1); ++i)  acadoVariables.x[ i ] = 0.0;
 | 
					
						
							|  |  |  |   for (i = 0; i < NU * N; ++i)  acadoVariables.u[ i ] = 0.0;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* Initialize the measurements/reference. */
 | 
					
						
							|  |  |  |   for (i = 0; i < NY * N; ++i)  acadoVariables.y[ i ] = 0.0;
 | 
					
						
							|  |  |  |   for (i = 0; i < NYN; ++i)  acadoVariables.yN[ i ] = 0.0;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* MPC: initialize the current state feedback. */
 | 
					
						
							|  |  |  |   for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   init_weights(pathCost, headingCost, steerRateCost);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int run_mpc(state_t * x0, log_t * solution, double v_ego,
 | 
					
						
							|  |  |  |              double curvature_factor, double rotation_radius, double target_y[N+1], double target_psi[N+1]){
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   int    i;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for (i = 0; i <= NOD * N; i+= NOD){
 | 
					
						
							|  |  |  |     acadoVariables.od[i] = curvature_factor;
 | 
					
						
							|  |  |  |     acadoVariables.od[i+1] = v_ego;
 | 
					
						
							|  |  |  |     acadoVariables.od[i+2] = rotation_radius;
 | 
					
						
							|  |  |  |   }
 | 
					
						
							|  |  |  |   for (i = 0; i < N; i+= 1){
 | 
					
						
							|  |  |  |     acadoVariables.y[NY*i + 0] = target_y[i];
 | 
					
						
							|  |  |  |     acadoVariables.y[NY*i + 1] = (v_ego + 1.0) * target_psi[i];
 | 
					
						
							|  |  |  |     acadoVariables.y[NY*i + 2] = 0.0;
 | 
					
						
							|  |  |  |   }
 | 
					
						
							|  |  |  |   acadoVariables.yN[0] = target_y[N];
 | 
					
						
							|  |  |  |   acadoVariables.yN[1] = (2.0 * v_ego + 1.0) * target_psi[N];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   acadoVariables.x0[0] = x0->x;
 | 
					
						
							|  |  |  |   acadoVariables.x0[1] = x0->y;
 | 
					
						
							|  |  |  |   acadoVariables.x0[2] = x0->psi;
 | 
					
						
							|  |  |  |   acadoVariables.x0[3] = x0->tire_angle;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   acado_preparationStep();
 | 
					
						
							|  |  |  |   acado_feedbackStep();
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* printf("lat its: %d\n", acado_getNWSR());  // n iterations
 | 
					
						
							|  |  |  |   printf("Objective: %.6f\n", acado_getObjective());  // solution cost */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for (i = 0; i <= N; i++){
 | 
					
						
							|  |  |  |     solution->x[i] = acadoVariables.x[i*NX];
 | 
					
						
							|  |  |  |     solution->y[i] = acadoVariables.x[i*NX+1];
 | 
					
						
							|  |  |  |     solution->psi[i] = acadoVariables.x[i*NX+2];
 | 
					
						
							|  |  |  |     solution->tire_angle[i] = acadoVariables.x[i*NX+3];
 | 
					
						
							|  |  |  |     if (i < N){
 | 
					
						
							|  |  |  |       solution->tire_angle_rate[i] = acadoVariables.u[i];
 | 
					
						
							|  |  |  |     }
 | 
					
						
							|  |  |  |   }
 | 
					
						
							|  |  |  |   solution->cost = acado_getObjective();
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Dont shift states here. Current solution is closer to next timestep than if
 | 
					
						
							|  |  |  |   // we use the old solution as a starting point
 | 
					
						
							|  |  |  |   //acado_shiftStates(2, 0, 0);
 | 
					
						
							|  |  |  |   //acado_shiftControls( 0 );
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return acado_getNWSR();
 | 
					
						
							|  |  |  | }
 |