|  |  |  | import math
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from cereal import log
 | 
					
						
							|  |  |  | from common.filter_simple import FirstOrderFilter
 | 
					
						
							|  |  |  | from common.numpy_fast import clip, interp
 | 
					
						
							|  |  |  | from common.realtime import DT_CTRL
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class LatControlINDI(LatControl):
 | 
					
						
							|  |  |  |   def __init__(self, CP, CI):
 | 
					
						
							|  |  |  |     super().__init__(CP, CI)
 | 
					
						
							|  |  |  |     self.angle_steers_des = 0.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     A = np.array([[1.0, DT_CTRL, 0.0],
 | 
					
						
							|  |  |  |                   [0.0, 1.0, DT_CTRL],
 | 
					
						
							|  |  |  |                   [0.0, 0.0, 1.0]])
 | 
					
						
							|  |  |  |     C = np.array([[1.0, 0.0, 0.0],
 | 
					
						
							|  |  |  |                   [0.0, 1.0, 0.0]])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Q = np.matrix([[1e-2, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0]])
 | 
					
						
							|  |  |  |     # R = np.matrix([[1e-2, 0.0], [0.0, 1e3]])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # (x, l, K) = control.dare(np.transpose(A), np.transpose(C), Q, R)
 | 
					
						
							|  |  |  |     # K = np.transpose(K)
 | 
					
						
							|  |  |  |     K = np.array([[7.30262179e-01, 2.07003658e-04],
 | 
					
						
							|  |  |  |                   [7.29394177e+00, 1.39159419e-02],
 | 
					
						
							|  |  |  |                   [1.71022442e+01, 3.38495381e-02]])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.speed = 0.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.K = K
 | 
					
						
							|  |  |  |     self.A_K = A - np.dot(K, C)
 | 
					
						
							|  |  |  |     self.x = np.array([[0.], [0.], [0.]])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self._RC = (CP.lateralTuning.indi.timeConstantBP, CP.lateralTuning.indi.timeConstantV)
 | 
					
						
							|  |  |  |     self._G = (CP.lateralTuning.indi.actuatorEffectivenessBP, CP.lateralTuning.indi.actuatorEffectivenessV)
 | 
					
						
							|  |  |  |     self._outer_loop_gain = (CP.lateralTuning.indi.outerLoopGainBP, CP.lateralTuning.indi.outerLoopGainV)
 | 
					
						
							|  |  |  |     self._inner_loop_gain = (CP.lateralTuning.indi.innerLoopGainBP, CP.lateralTuning.indi.innerLoopGainV)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.steer_filter = FirstOrderFilter(0., self.RC, DT_CTRL)
 | 
					
						
							|  |  |  |     self.reset()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @property
 | 
					
						
							|  |  |  |   def RC(self):
 | 
					
						
							|  |  |  |     return interp(self.speed, self._RC[0], self._RC[1])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @property
 | 
					
						
							|  |  |  |   def G(self):
 | 
					
						
							|  |  |  |     return interp(self.speed, self._G[0], self._G[1])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @property
 | 
					
						
							|  |  |  |   def outer_loop_gain(self):
 | 
					
						
							|  |  |  |     return interp(self.speed, self._outer_loop_gain[0], self._outer_loop_gain[1])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @property
 | 
					
						
							|  |  |  |   def inner_loop_gain(self):
 | 
					
						
							|  |  |  |     return interp(self.speed, self._inner_loop_gain[0], self._inner_loop_gain[1])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def reset(self):
 | 
					
						
							|  |  |  |     super().reset()
 | 
					
						
							|  |  |  |     self.steer_filter.x = 0.
 | 
					
						
							|  |  |  |     self.speed = 0.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
 | 
					
						
							|  |  |  |     self.speed = CS.vEgo
 | 
					
						
							|  |  |  |     # Update Kalman filter
 | 
					
						
							|  |  |  |     y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]])
 | 
					
						
							|  |  |  |     self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     indi_log = log.ControlsState.LateralINDIState.new_message()
 | 
					
						
							|  |  |  |     indi_log.steeringAngleDeg = math.degrees(self.x[0])
 | 
					
						
							|  |  |  |     indi_log.steeringRateDeg = math.degrees(self.x[1])
 | 
					
						
							|  |  |  |     indi_log.steeringAccelDeg = math.degrees(self.x[2])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     steers_des = VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)
 | 
					
						
							|  |  |  |     steers_des += math.radians(params.angleOffsetDeg)
 | 
					
						
							|  |  |  |     indi_log.steeringAngleDesiredDeg = math.degrees(steers_des)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     rate_des = VM.get_steer_from_curvature(-desired_curvature_rate, CS.vEgo, 0)
 | 
					
						
							|  |  |  |     indi_log.steeringRateDesiredDeg = math.degrees(rate_des)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if CS.vEgo < MIN_STEER_SPEED or not active:
 | 
					
						
							|  |  |  |       indi_log.active = False
 | 
					
						
							|  |  |  |       self.steer_filter.x = 0.0
 | 
					
						
							|  |  |  |       output_steer = 0
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       # Expected actuator value
 | 
					
						
							|  |  |  |       self.steer_filter.update_alpha(self.RC)
 | 
					
						
							|  |  |  |       self.steer_filter.update(last_actuators.steer)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # Compute acceleration error
 | 
					
						
							|  |  |  |       rate_sp = self.outer_loop_gain * (steers_des - self.x[0]) + rate_des
 | 
					
						
							|  |  |  |       accel_sp = self.inner_loop_gain * (rate_sp - self.x[1])
 | 
					
						
							|  |  |  |       accel_error = accel_sp - self.x[2]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # Compute change in actuator
 | 
					
						
							|  |  |  |       g_inv = 1. / self.G
 | 
					
						
							|  |  |  |       delta_u = g_inv * accel_error
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # If steering pressed, only allow wind down
 | 
					
						
							|  |  |  |       if CS.steeringPressed and (delta_u * last_actuators.steer > 0):
 | 
					
						
							|  |  |  |         delta_u = 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       output_steer = self.steer_filter.x + delta_u
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       output_steer = clip(output_steer, -self.steer_max, self.steer_max)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       indi_log.active = True
 | 
					
						
							|  |  |  |       indi_log.rateSetPoint = float(rate_sp)
 | 
					
						
							|  |  |  |       indi_log.accelSetPoint = float(accel_sp)
 | 
					
						
							|  |  |  |       indi_log.accelError = float(accel_error)
 | 
					
						
							|  |  |  |       indi_log.delayedOutput = float(self.steer_filter.x)
 | 
					
						
							|  |  |  |       indi_log.delta = float(delta_u)
 | 
					
						
							|  |  |  |       indi_log.output = float(output_steer)
 | 
					
						
							|  |  |  |       indi_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return float(output_steer), float(steers_des), indi_log
 |