You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.2 KiB
108 lines
3.2 KiB
6 years ago
|
namespace Eigen {
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template <typename Scalar>
|
||
|
void dogleg(
|
||
|
const Matrix< Scalar, Dynamic, Dynamic > &qrfac,
|
||
|
const Matrix< Scalar, Dynamic, 1 > &diag,
|
||
|
const Matrix< Scalar, Dynamic, 1 > &qtb,
|
||
|
Scalar delta,
|
||
|
Matrix< Scalar, Dynamic, 1 > &x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
using std::sqrt;
|
||
|
|
||
|
typedef DenseIndex Index;
|
||
|
|
||
|
/* Local variables */
|
||
|
Index i, j;
|
||
|
Scalar sum, temp, alpha, bnorm;
|
||
|
Scalar gnorm, qnorm;
|
||
|
Scalar sgnorm;
|
||
|
|
||
|
/* Function Body */
|
||
|
const Scalar epsmch = NumTraits<Scalar>::epsilon();
|
||
|
const Index n = qrfac.cols();
|
||
|
eigen_assert(n==qtb.size());
|
||
|
eigen_assert(n==x.size());
|
||
|
eigen_assert(n==diag.size());
|
||
|
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
|
||
|
|
||
|
/* first, calculate the gauss-newton direction. */
|
||
|
for (j = n-1; j >=0; --j) {
|
||
|
temp = qrfac(j,j);
|
||
|
if (temp == 0.) {
|
||
|
temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
|
||
|
if (temp == 0.)
|
||
|
temp = epsmch;
|
||
|
}
|
||
|
if (j==n-1)
|
||
|
x[j] = qtb[j] / temp;
|
||
|
else
|
||
|
x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
|
||
|
}
|
||
|
|
||
|
/* test whether the gauss-newton direction is acceptable. */
|
||
|
qnorm = diag.cwiseProduct(x).stableNorm();
|
||
|
if (qnorm <= delta)
|
||
|
return;
|
||
|
|
||
|
// TODO : this path is not tested by Eigen unit tests
|
||
|
|
||
|
/* the gauss-newton direction is not acceptable. */
|
||
|
/* next, calculate the scaled gradient direction. */
|
||
|
|
||
|
wa1.fill(0.);
|
||
|
for (j = 0; j < n; ++j) {
|
||
|
wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
|
||
|
wa1[j] /= diag[j];
|
||
|
}
|
||
|
|
||
|
/* calculate the norm of the scaled gradient and test for */
|
||
|
/* the special case in which the scaled gradient is zero. */
|
||
|
gnorm = wa1.stableNorm();
|
||
|
sgnorm = 0.;
|
||
|
alpha = delta / qnorm;
|
||
|
if (gnorm == 0.)
|
||
|
goto algo_end;
|
||
|
|
||
|
/* calculate the point along the scaled gradient */
|
||
|
/* at which the quadratic is minimized. */
|
||
|
wa1.array() /= (diag*gnorm).array();
|
||
|
// TODO : once unit tests cover this part,:
|
||
|
// wa2 = qrfac.template triangularView<Upper>() * wa1;
|
||
|
for (j = 0; j < n; ++j) {
|
||
|
sum = 0.;
|
||
|
for (i = j; i < n; ++i) {
|
||
|
sum += qrfac(j,i) * wa1[i];
|
||
|
}
|
||
|
wa2[j] = sum;
|
||
|
}
|
||
|
temp = wa2.stableNorm();
|
||
|
sgnorm = gnorm / temp / temp;
|
||
|
|
||
|
/* test whether the scaled gradient direction is acceptable. */
|
||
|
alpha = 0.;
|
||
|
if (sgnorm >= delta)
|
||
|
goto algo_end;
|
||
|
|
||
|
/* the scaled gradient direction is not acceptable. */
|
||
|
/* finally, calculate the point along the dogleg */
|
||
|
/* at which the quadratic is minimized. */
|
||
|
bnorm = qtb.stableNorm();
|
||
|
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
|
||
|
temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
|
||
|
alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
|
||
|
algo_end:
|
||
|
|
||
|
/* form appropriate convex combination of the gauss-newton */
|
||
|
/* direction and the scaled gradient direction. */
|
||
|
temp = (1.-alpha) * (std::min)(sgnorm,delta);
|
||
|
x = temp * wa1 + alpha * x;
|
||
|
}
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
} // end namespace Eigen
|