dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

293 lines
12 KiB

import numpy as np
import math
from cereal import log
from common.numpy_fast import interp
from common.params import Params
from common.realtime import sec_since_boot
from common.conversions import Conversions as CV
from selfdrive.controls.lib.lane_planner import TRAJECTORY_SIZE
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX
_MIN_V = 5.6 # Do not operate under 20km/h
_ENTERING_PRED_LAT_ACC_TH = 1.3 # Predicted Lat Acc threshold to trigger entering turn state.
_ABORT_ENTERING_PRED_LAT_ACC_TH = 1.1 # Predicted Lat Acc threshold to abort entering state if speed drops.
_TURNING_LAT_ACC_TH = 1.6 # Lat Acc threshold to trigger turning turn state.
_LEAVING_LAT_ACC_TH = 1.3 # Lat Acc threshold to trigger leaving turn state.
_FINISH_LAT_ACC_TH = 1.1 # Lat Acc threshold to trigger end of turn cycle.
_EVAL_STEP = 5. # mts. Resolution of the curvature evaluation.
_EVAL_START = 20. # mts. Distance ahead where to start evaluating vision curvature.
_EVAL_LENGHT = 150. # mts. Distance ahead where to stop evaluating vision curvature.
_EVAL_RANGE = np.arange(_EVAL_START, _EVAL_LENGHT, _EVAL_STEP)
_A_LAT_REG_MAX = 2. # Maximum lateral acceleration
_NO_OVERSHOOT_TIME_HORIZON = 4. # s. Time to use for velocity desired based on a_target when not overshooting.
# Lookup table for the minimum smooth deceleration during the ENTERING state
# depending on the actual maximum absolute lateral acceleration predicted on the turn ahead.
_ENTERING_SMOOTH_DECEL_V = [-0.2, -0.5] # min decel value allowed on ENTERING state
_ENTERING_SMOOTH_DECEL_BP = [1.3, 3.] # absolute value of lat acc ahead
# Lookup table for the acceleration for the TURNING state
# depending on the current lateral acceleration of the vehicle.
_TURNING_ACC_V = [0.5, 0., -0.4] # acc value
_TURNING_ACC_BP = [1.5, 2.3, 3.] # absolute value of current lat acc
_LEAVING_ACC = 0.5 # Confortble acceleration to regain speed while leaving a turn.
_MIN_LANE_PROB = 0.6 # Minimum lanes probability to allow curvature prediction based on lanes.
_DEBUG = False
def _debug(msg):
if not _DEBUG:
return
print(msg)
VisionTurnControllerState = log.LongitudinalPlan.VisionTurnControllerState
def eval_curvature(poly, x_vals):
"""
This function returns a vector with the curvature based on path defined by `poly`
evaluated on distance vector `x_vals`
"""
# https://en.wikipedia.org/wiki/Curvature# Local_expressions
def curvature(x):
a = abs(2 * poly[1] + 6 * poly[0] * x) / (1 + (3 * poly[0] * x**2 + 2 * poly[1] * x + poly[2])**2)**(1.5)
return a
return np.vectorize(curvature)(x_vals)
def eval_lat_acc(v_ego, x_curv):
"""
This function returns a vector with the lateral acceleration based
for the provided speed `v_ego` evaluated over curvature vector `x_curv`
"""
def lat_acc(curv):
a = v_ego**2 * curv
return a
return np.vectorize(lat_acc)(x_curv)
def _description_for_state(turn_controller_state):
if turn_controller_state == VisionTurnControllerState.disabled:
return 'DISABLED'
if turn_controller_state == VisionTurnControllerState.entering:
return 'ENTERING'
if turn_controller_state == VisionTurnControllerState.turning:
return 'TURNING'
if turn_controller_state == VisionTurnControllerState.leaving:
return 'LEAVING'
class VisionTurnController():
def __init__(self, CP):
self._params = Params()
self._CP = CP
self._op_enabled = False
self._gas_pressed = False
self._is_enabled = self._params.get_bool("TurnVisionControl")
self._last_params_update = 0.
self._v_cruise_setpoint = 0.
self._v_ego = 0.
self._a_ego = 0.
self._a_target = 0.
self._v_overshoot = 0.
self._state = VisionTurnControllerState.disabled
self._reset()
@property
def state(self):
return self._state
@state.setter
def state(self, value):
if value != self._state:
_debug(f'TVC: TurnVisionController state: {_description_for_state(value)}')
if value == VisionTurnControllerState.disabled:
self._reset()
self._state = value
@property
def a_target(self):
return self._a_target if self.is_active else self._a_ego
@property
def v_turn(self):
if not self.is_active:
return self._v_cruise_setpoint
return self._v_overshoot if self._lat_acc_overshoot_ahead \
else self._v_ego + self._a_target * _NO_OVERSHOOT_TIME_HORIZON
@property
def is_active(self):
return self._state != VisionTurnControllerState.disabled
def _reset(self):
self._current_lat_acc = 0.
self._max_v_for_current_curvature = 0.
self._max_pred_lat_acc = 0.
self._v_overshoot_distance = 200.
self._lat_acc_overshoot_ahead = False
def _update_params(self):
time = sec_since_boot()
if time > self._last_params_update + 5.0:
self._is_enabled = self._params.get_bool("TurnVisionControl")
self._last_params_update = time
def _update_calculations(self, sm):
# Get path polynomial aproximation for curvature estimation from model data.
path_poly = None
model_data = sm['modelV2'] if sm.valid.get('modelV2', False) else None
lat_planner_data = sm['lateralPlan'] if sm.valid.get('lateralPlan', False) else None
# 1. When the probability of lanes is good enough, compute polynomial from lanes as they are way more stable
# on current mode than drving path.
if model_data is not None and len(model_data.laneLines) == 4 and len(model_data.laneLines[0].t) == TRAJECTORY_SIZE:
ll_x = model_data.laneLines[1].x # left and right ll x is the same
lll_y = np.array(model_data.laneLines[1].y)
rll_y = np.array(model_data.laneLines[2].y)
l_prob = model_data.laneLineProbs[1]
r_prob = model_data.laneLineProbs[2]
lll_std = model_data.laneLineStds[1]
rll_std = model_data.laneLineStds[2]
# Reduce reliance on lanelines that are too far apart or will be in a few seconds
width_pts = rll_y - lll_y
prob_mods = []
for t_check in [0.0, 1.5, 3.0]:
width_at_t = interp(t_check * (self._v_ego + 7), ll_x, width_pts)
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
# Reduce reliance on uncertain lanelines
l_std_mod = interp(lll_std, [.15, .3], [1.0, 0.0])
r_std_mod = interp(rll_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
# Find path from lanes as the average center lane only if min probability on both lanes is above threshold.
if l_prob > _MIN_LANE_PROB and r_prob > _MIN_LANE_PROB:
c_y = width_pts / 2 + lll_y
path_poly = np.polyfit(ll_x, c_y, 3)
# 2. If not polynomial derived from lanes, then derive it from compensated driving path with lanes as
# provided by `lateralPlanner`.
if path_poly is None and lat_planner_data is not None and len(lat_planner_data.dPathWLinesX) > 0 \
and lat_planner_data.dPathWLinesX[0] > 0:
path_poly = np.polyfit(lat_planner_data.dPathWLinesX, lat_planner_data.dPathWLinesY, 3)
# 3. If no polynomial derived from lanes or driving path, then provide a straight line poly.
if path_poly is None:
path_poly = np.array([0., 0., 0., 0.])
current_curvature = abs(
sm['carState'].steeringAngleDeg * CV.DEG_TO_RAD / (self._CP.steerRatio * self._CP.wheelbase))
self._current_lat_acc = current_curvature * self._v_ego**2
self._max_v_for_current_curvature = math.sqrt(_A_LAT_REG_MAX / current_curvature) if current_curvature > 0 \
else V_CRUISE_MAX * CV.KPH_TO_MS
pred_curvatures = eval_curvature(path_poly, _EVAL_RANGE)
max_pred_curvature = np.amax(pred_curvatures)
self._max_pred_lat_acc = self._v_ego**2 * max_pred_curvature
max_curvature_for_vego = _A_LAT_REG_MAX / max(self._v_ego, 0.1)**2
lat_acc_overshoot_idxs = np.nonzero(pred_curvatures >= max_curvature_for_vego)[0]
self._lat_acc_overshoot_ahead = len(lat_acc_overshoot_idxs) > 0
if self._lat_acc_overshoot_ahead:
self._v_overshoot = min(math.sqrt(_A_LAT_REG_MAX / max_pred_curvature), self._v_cruise_setpoint)
self._v_overshoot_distance = max(lat_acc_overshoot_idxs[0] * _EVAL_STEP + _EVAL_START, _EVAL_STEP)
_debug(f'TVC: High LatAcc. Dist: {self._v_overshoot_distance:.2f}, v: {self._v_overshoot * CV.MS_TO_KPH:.2f}')
def _state_transition(self):
# In any case, if system is disabled or the feature is disabeld or gas is pressed, disable.
if not self._op_enabled or not self._is_enabled or self._gas_pressed:
self.state = VisionTurnControllerState.disabled
return
# DISABLED
if self.state == VisionTurnControllerState.disabled:
# Do not enter a turn control cycle if speed is low.
if self._v_ego <= _MIN_V:
pass
# If substantial lateral acceleration is predicted ahead, then move to Entering turn state.
elif self._max_pred_lat_acc >= _ENTERING_PRED_LAT_ACC_TH:
self.state = VisionTurnControllerState.entering
# ENTERING
elif self.state == VisionTurnControllerState.entering:
# Transition to Turning if current lateral acceleration is over the threshold.
if self._current_lat_acc >= _TURNING_LAT_ACC_TH:
self.state = VisionTurnControllerState.turning
# Abort if the predicted lateral acceleration drops
elif self._max_pred_lat_acc < _ABORT_ENTERING_PRED_LAT_ACC_TH:
self.state = VisionTurnControllerState.disabled
# TURNING
elif self.state == VisionTurnControllerState.turning:
# Transition to Leaving if current lateral acceleration drops drops below threshold.
if self._current_lat_acc <= _LEAVING_LAT_ACC_TH:
self.state = VisionTurnControllerState.leaving
# LEAVING
elif self.state == VisionTurnControllerState.leaving:
# Transition back to Turning if current lateral acceleration goes back over the threshold.
if self._current_lat_acc >= _TURNING_LAT_ACC_TH:
self.state = VisionTurnControllerState.turning
# Finish if current lateral acceleration goes below threshold.
elif self._current_lat_acc < _FINISH_LAT_ACC_TH:
self.state = VisionTurnControllerState.disabled
def _update_solution(self):
# DISABLED
if self.state == VisionTurnControllerState.disabled:
# when not overshooting, calculate v_turn as the speed at the prediction horizon when following
# the smooth deceleration.
a_target = self._a_ego
# ENTERING
elif self.state == VisionTurnControllerState.entering:
# when not overshooting, target a smooth deceleration in preparation for a sharp turn to come.
a_target = interp(self._max_pred_lat_acc, _ENTERING_SMOOTH_DECEL_BP, _ENTERING_SMOOTH_DECEL_V)
if self._lat_acc_overshoot_ahead:
# when overshooting, target the acceleration needed to achieve the overshoot speed at
# the required distance
a_target = min((self._v_overshoot**2 - self._v_ego**2) / (2 * self._v_overshoot_distance), a_target)
_debug(f'TVC Entering: Overshooting: {self._lat_acc_overshoot_ahead}')
_debug(f' Decel: {a_target:.2f}, target v: {self.v_turn * CV.MS_TO_KPH}')
# TURNING
elif self.state == VisionTurnControllerState.turning:
# When turning we provide a target acceleration that is confortable for the lateral accelearation felt.
a_target = interp(self._current_lat_acc, _TURNING_ACC_BP, _TURNING_ACC_V)
# LEAVING
elif self.state == VisionTurnControllerState.leaving:
# When leaving we provide a confortable acceleration to regain speed.
a_target = _LEAVING_ACC
# update solution values.
self._a_target = a_target
def update(self, enabled, v_ego, a_ego, v_cruise_setpoint, sm):
self._op_enabled = enabled
self._gas_pressed = sm['carState'].gasPressed
self._v_ego = v_ego
self._a_ego = a_ego
self._v_cruise_setpoint = v_cruise_setpoint
self._update_params()
self._update_calculations(sm)
self._state_transition()
self._update_solution()