|  |  |  | #!/usr/bin/env python3
 | 
					
						
							|  |  |  | import math
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from common.params import Params
 | 
					
						
							|  |  |  | from common.numpy_fast import interp
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import cereal.messaging as messaging
 | 
					
						
							|  |  |  | from cereal import car
 | 
					
						
							|  |  |  | from common.realtime import sec_since_boot
 | 
					
						
							|  |  |  | from selfdrive.swaglog import cloudlog
 | 
					
						
							|  |  |  | from selfdrive.config import Conversions as CV
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.speed_smoother import speed_smoother
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.longcontrol import LongCtrlState, MIN_CAN_SPEED
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.fcw import FCWChecker
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.long_mpc import LongitudinalMpc
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | MAX_SPEED = 255.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | LON_MPC_STEP = 0.2  # first step is 0.2s
 | 
					
						
							|  |  |  | MAX_SPEED_ERROR = 2.0
 | 
					
						
							|  |  |  | AWARENESS_DECEL = -0.2     # car smoothly decel at .2m/s^2 when user is distracted
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # lookup tables VS speed to determine min and max accels in cruise
 | 
					
						
							|  |  |  | # make sure these accelerations are smaller than mpc limits
 | 
					
						
							|  |  |  | _A_CRUISE_MIN_V = [-1.0, -.8, -.67, -.5, -.30]
 | 
					
						
							|  |  |  | _A_CRUISE_MIN_BP = [   0., 5.,  10., 20.,  40.]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # need fast accel at very low speed for stop and go
 | 
					
						
							|  |  |  | # make sure these accelerations are smaller than mpc limits
 | 
					
						
							|  |  |  | _A_CRUISE_MAX_V = [1.2, 1.2, 0.65, .4]
 | 
					
						
							|  |  |  | _A_CRUISE_MAX_V_FOLLOWING = [1.6, 1.6, 0.65, .4]
 | 
					
						
							|  |  |  | _A_CRUISE_MAX_BP = [0.,  6.4, 22.5, 40.]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Lookup table for turns
 | 
					
						
							|  |  |  | _A_TOTAL_MAX_V = [1.7, 3.2]
 | 
					
						
							|  |  |  | _A_TOTAL_MAX_BP = [20., 40.]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # 75th percentile
 | 
					
						
							|  |  |  | SPEED_PERCENTILE_IDX = 7
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_cruise_accel_limits(v_ego, following):
 | 
					
						
							|  |  |  |   a_cruise_min = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if following:
 | 
					
						
							|  |  |  |     a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V_FOLLOWING)
 | 
					
						
							|  |  |  |   else:
 | 
					
						
							|  |  |  |     a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V)
 | 
					
						
							|  |  |  |   return np.vstack([a_cruise_min, a_cruise_max])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
 | 
					
						
							|  |  |  |   """
 | 
					
						
							|  |  |  |   This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
 | 
					
						
							|  |  |  |   this should avoid accelerating when losing the target in turns
 | 
					
						
							|  |  |  |   """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
 | 
					
						
							|  |  |  |   a_y = v_ego**2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
 | 
					
						
							|  |  |  |   a_x_allowed = math.sqrt(max(a_total_max**2 - a_y**2, 0.))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return [a_target[0], min(a_target[1], a_x_allowed)]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Planner():
 | 
					
						
							|  |  |  |   def __init__(self, CP):
 | 
					
						
							|  |  |  |     self.CP = CP
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.mpc1 = LongitudinalMpc(1)
 | 
					
						
							|  |  |  |     self.mpc2 = LongitudinalMpc(2)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.v_acc_start = 0.0
 | 
					
						
							|  |  |  |     self.a_acc_start = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.v_acc = 0.0
 | 
					
						
							|  |  |  |     self.v_acc_future = 0.0
 | 
					
						
							|  |  |  |     self.a_acc = 0.0
 | 
					
						
							|  |  |  |     self.v_cruise = 0.0
 | 
					
						
							|  |  |  |     self.a_cruise = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.longitudinalPlanSource = 'cruise'
 | 
					
						
							|  |  |  |     self.fcw_checker = FCWChecker()
 | 
					
						
							|  |  |  |     self.path_x = np.arange(192)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.params = Params()
 | 
					
						
							|  |  |  |     self.first_loop = True
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def choose_solution(self, v_cruise_setpoint, enabled):
 | 
					
						
							|  |  |  |     if enabled:
 | 
					
						
							|  |  |  |       solutions = {'cruise': self.v_cruise}
 | 
					
						
							|  |  |  |       if self.mpc1.prev_lead_status:
 | 
					
						
							|  |  |  |         solutions['mpc1'] = self.mpc1.v_mpc
 | 
					
						
							|  |  |  |       if self.mpc2.prev_lead_status:
 | 
					
						
							|  |  |  |         solutions['mpc2'] = self.mpc2.v_mpc
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       slowest = min(solutions, key=solutions.get)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       self.longitudinalPlanSource = slowest
 | 
					
						
							|  |  |  |       # Choose lowest of MPC and cruise
 | 
					
						
							|  |  |  |       if slowest == 'mpc1':
 | 
					
						
							|  |  |  |         self.v_acc = self.mpc1.v_mpc
 | 
					
						
							|  |  |  |         self.a_acc = self.mpc1.a_mpc
 | 
					
						
							|  |  |  |       elif slowest == 'mpc2':
 | 
					
						
							|  |  |  |         self.v_acc = self.mpc2.v_mpc
 | 
					
						
							|  |  |  |         self.a_acc = self.mpc2.a_mpc
 | 
					
						
							|  |  |  |       elif slowest == 'cruise':
 | 
					
						
							|  |  |  |         self.v_acc = self.v_cruise
 | 
					
						
							|  |  |  |         self.a_acc = self.a_cruise
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.v_acc_future = min([self.mpc1.v_mpc_future, self.mpc2.v_mpc_future, v_cruise_setpoint])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, sm, pm, CP, VM, PP):
 | 
					
						
							|  |  |  |     """Gets called when new radarState is available"""
 | 
					
						
							|  |  |  |     cur_time = sec_since_boot()
 | 
					
						
							|  |  |  |     v_ego = sm['carState'].vEgo
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     long_control_state = sm['controlsState'].longControlState
 | 
					
						
							|  |  |  |     v_cruise_kph = sm['controlsState'].vCruise
 | 
					
						
							|  |  |  |     force_slow_decel = sm['controlsState'].forceDecel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
 | 
					
						
							|  |  |  |     v_cruise_setpoint = v_cruise_kph * CV.KPH_TO_MS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lead_1 = sm['radarState'].leadOne
 | 
					
						
							|  |  |  |     lead_2 = sm['radarState'].leadTwo
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     enabled = (long_control_state == LongCtrlState.pid) or (long_control_state == LongCtrlState.stopping)
 | 
					
						
							|  |  |  |     following = lead_1.status and lead_1.dRel < 45.0 and lead_1.vLeadK > v_ego and lead_1.aLeadK > 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Calculate speed for normal cruise control
 | 
					
						
							|  |  |  |     if enabled and not self.first_loop and not sm['carState'].gasPressed:
 | 
					
						
							|  |  |  |       accel_limits = [float(x) for x in calc_cruise_accel_limits(v_ego, following)]
 | 
					
						
							|  |  |  |       jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])]  # TODO: make a separate lookup for jerk tuning
 | 
					
						
							|  |  |  |       accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngle, accel_limits, self.CP)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if force_slow_decel:
 | 
					
						
							|  |  |  |         # if required so, force a smooth deceleration
 | 
					
						
							|  |  |  |         accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
 | 
					
						
							|  |  |  |         accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       self.v_cruise, self.a_cruise = speed_smoother(self.v_acc_start, self.a_acc_start,
 | 
					
						
							|  |  |  |                                                     v_cruise_setpoint,
 | 
					
						
							|  |  |  |                                                     accel_limits_turns[1], accel_limits_turns[0],
 | 
					
						
							|  |  |  |                                                     jerk_limits[1], jerk_limits[0],
 | 
					
						
							|  |  |  |                                                     LON_MPC_STEP)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # cruise speed can't be negative even is user is distracted
 | 
					
						
							|  |  |  |       self.v_cruise = max(self.v_cruise, 0.)
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       starting = long_control_state == LongCtrlState.starting
 | 
					
						
							|  |  |  |       a_ego = min(sm['carState'].aEgo, 0.0)
 | 
					
						
							|  |  |  |       reset_speed = MIN_CAN_SPEED if starting else v_ego
 | 
					
						
							|  |  |  |       reset_accel = self.CP.startAccel if starting else a_ego
 | 
					
						
							|  |  |  |       self.v_acc = reset_speed
 | 
					
						
							|  |  |  |       self.a_acc = reset_accel
 | 
					
						
							|  |  |  |       self.v_acc_start = reset_speed
 | 
					
						
							|  |  |  |       self.a_acc_start = reset_accel
 | 
					
						
							|  |  |  |       self.v_cruise = reset_speed
 | 
					
						
							|  |  |  |       self.a_cruise = reset_accel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.mpc1.set_cur_state(self.v_acc_start, self.a_acc_start)
 | 
					
						
							|  |  |  |     self.mpc2.set_cur_state(self.v_acc_start, self.a_acc_start)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.mpc1.update(pm, sm['carState'], lead_1, v_cruise_setpoint)
 | 
					
						
							|  |  |  |     self.mpc2.update(pm, sm['carState'], lead_2, v_cruise_setpoint)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.choose_solution(v_cruise_setpoint, enabled)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # determine fcw
 | 
					
						
							|  |  |  |     if self.mpc1.new_lead:
 | 
					
						
							|  |  |  |       self.fcw_checker.reset_lead(cur_time)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     blinkers = sm['carState'].leftBlinker or sm['carState'].rightBlinker
 | 
					
						
							|  |  |  |     fcw = self.fcw_checker.update(self.mpc1.mpc_solution, cur_time,
 | 
					
						
							|  |  |  |                                   sm['controlsState'].active,
 | 
					
						
							|  |  |  |                                   v_ego, sm['carState'].aEgo,
 | 
					
						
							|  |  |  |                                   lead_1.dRel, lead_1.vLead, lead_1.aLeadK,
 | 
					
						
							|  |  |  |                                   lead_1.yRel, lead_1.vLat,
 | 
					
						
							|  |  |  |                                   lead_1.fcw, blinkers) and not sm['carState'].brakePressed
 | 
					
						
							|  |  |  |     if fcw:
 | 
					
						
							|  |  |  |       cloudlog.info("FCW triggered %s", self.fcw_checker.counters)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     radar_dead = not sm.alive['radarState']
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     radar_errors = list(sm['radarState'].radarErrors)
 | 
					
						
							|  |  |  |     radar_fault = car.RadarData.Error.fault in radar_errors
 | 
					
						
							|  |  |  |     radar_can_error = car.RadarData.Error.canError in radar_errors
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # **** send the plan ****
 | 
					
						
							|  |  |  |     plan_send = messaging.new_message('plan')
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'radarState'])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     plan_send.plan.mdMonoTime = sm.logMonoTime['model']
 | 
					
						
							|  |  |  |     plan_send.plan.radarStateMonoTime = sm.logMonoTime['radarState']
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # longitudal plan
 | 
					
						
							|  |  |  |     plan_send.plan.vCruise = float(self.v_cruise)
 | 
					
						
							|  |  |  |     plan_send.plan.aCruise = float(self.a_cruise)
 | 
					
						
							|  |  |  |     plan_send.plan.vStart = float(self.v_acc_start)
 | 
					
						
							|  |  |  |     plan_send.plan.aStart = float(self.a_acc_start)
 | 
					
						
							|  |  |  |     plan_send.plan.vTarget = float(self.v_acc)
 | 
					
						
							|  |  |  |     plan_send.plan.aTarget = float(self.a_acc)
 | 
					
						
							|  |  |  |     plan_send.plan.vTargetFuture = float(self.v_acc_future)
 | 
					
						
							|  |  |  |     plan_send.plan.hasLead = self.mpc1.prev_lead_status
 | 
					
						
							|  |  |  |     plan_send.plan.longitudinalPlanSource = self.longitudinalPlanSource
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     radar_valid = not (radar_dead or radar_fault)
 | 
					
						
							|  |  |  |     plan_send.plan.radarValid = bool(radar_valid)
 | 
					
						
							|  |  |  |     plan_send.plan.radarCanError = bool(radar_can_error)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     plan_send.plan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.rcv_time['radarState']
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Send out fcw
 | 
					
						
							|  |  |  |     plan_send.plan.fcw = fcw
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     pm.send('plan', plan_send)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Interpolate 0.05 seconds and save as starting point for next iteration
 | 
					
						
							|  |  |  |     a_acc_sol = self.a_acc_start + (CP.radarTimeStep / LON_MPC_STEP) * (self.a_acc - self.a_acc_start)
 | 
					
						
							|  |  |  |     v_acc_sol = self.v_acc_start + CP.radarTimeStep * (a_acc_sol + self.a_acc_start) / 2.0
 | 
					
						
							|  |  |  |     self.v_acc_start = v_acc_sol
 | 
					
						
							|  |  |  |     self.a_acc_start = a_acc_sol
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.first_loop = False
 |