dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

213 lines
7.8 KiB

import math
from cereal import car, log
from common.conversions import Conversions as CV
from common.numpy_fast import clip, interp
from common.realtime import DT_MDL
from selfdrive.modeld.constants import T_IDXS
# WARNING: this value was determined based on the model's training distribution,
# model predictions above this speed can be unpredictable
# V_CRUISE's are in kph
V_CRUISE_MIN = 8
V_CRUISE_MAX = 145
V_CRUISE_UNSET = 255
V_CRUISE_INITIAL = 40
V_CRUISE_INITIAL_EXPERIMENTAL_MODE = 105
IMPERIAL_INCREMENT = 1.6 # should be CV.MPH_TO_KPH, but this causes rounding errors
MIN_SPEED = 1.0
CONTROL_N = 17
CAR_ROTATION_RADIUS = 0.0
# EU guidelines
MAX_LATERAL_JERK = 5.0
MAX_VEL_ERR = 5.0
ButtonEvent = car.CarState.ButtonEvent
ButtonType = car.CarState.ButtonEvent.Type
CRUISE_LONG_PRESS = 50
CRUISE_NEAREST_FUNC = {
ButtonType.accelCruise: math.ceil,
ButtonType.decelCruise: math.floor,
}
CRUISE_INTERVAL_SIGN = {
ButtonType.accelCruise: +1,
ButtonType.decelCruise: -1,
}
class VCruiseHelper:
def __init__(self, CP):
self.CP = CP
self.v_cruise_kph = V_CRUISE_UNSET
self.v_cruise_cluster_kph = V_CRUISE_UNSET
self.v_cruise_kph_last = 0
self.button_timers = {ButtonType.decelCruise: 0, ButtonType.accelCruise: 0}
self.button_change_states = {btn: {"standstill": False, "enabled": False} for btn in self.button_timers}
@property
def v_cruise_initialized(self):
return self.v_cruise_kph != V_CRUISE_UNSET
def update_v_cruise(self, CS, enabled, is_metric):
self.v_cruise_kph_last = self.v_cruise_kph
if CS.cruiseState.available:
if not self.CP.pcmCruise:
# if stock cruise is completely disabled, then we can use our own set speed logic
self._update_v_cruise_non_pcm(CS, enabled, is_metric)
self.v_cruise_cluster_kph = self.v_cruise_kph
self.update_button_timers(CS, enabled)
else:
self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH
self.v_cruise_cluster_kph = CS.cruiseState.speedCluster * CV.MS_TO_KPH
else:
self.v_cruise_kph = V_CRUISE_UNSET
self.v_cruise_cluster_kph = V_CRUISE_UNSET
def _update_v_cruise_non_pcm(self, CS, enabled, is_metric):
# handle button presses. TODO: this should be in state_control, but a decelCruise press
# would have the effect of both enabling and changing speed is checked after the state transition
if not enabled:
return
long_press = False
button_type = None
v_cruise_delta = 1. if is_metric else IMPERIAL_INCREMENT
for b in CS.buttonEvents:
if b.type.raw in self.button_timers and not b.pressed:
if self.button_timers[b.type.raw] > CRUISE_LONG_PRESS:
return # end long press
button_type = b.type.raw
break
else:
for k in self.button_timers.keys():
if self.button_timers[k] and self.button_timers[k] % CRUISE_LONG_PRESS == 0:
button_type = k
long_press = True
break
if button_type is None:
return
# Don't adjust speed when pressing resume to exit standstill
cruise_standstill = self.button_change_states[button_type]["standstill"] or CS.cruiseState.standstill
if button_type == ButtonType.accelCruise and cruise_standstill:
return
# Don't adjust speed if we've enabled since the button was depressed (some ports enable on rising edge)
if not self.button_change_states[button_type]["enabled"]:
return
v_cruise_delta = v_cruise_delta * (5 if long_press else 1)
if long_press and self.v_cruise_kph % v_cruise_delta != 0: # partial interval
self.v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](self.v_cruise_kph / v_cruise_delta) * v_cruise_delta
else:
self.v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type]
# If set is pressed while overriding, clip cruise speed to minimum of vEgo
if CS.gasPressed and button_type in (ButtonType.decelCruise, ButtonType.setCruise):
self.v_cruise_kph = max(self.v_cruise_kph, CS.vEgo * CV.MS_TO_KPH)
self.v_cruise_kph = clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX)
def update_button_timers(self, CS, enabled):
# increment timer for buttons still pressed
for k in self.button_timers:
if self.button_timers[k] > 0:
self.button_timers[k] += 1
for b in CS.buttonEvents:
if b.type.raw in self.button_timers:
# Start/end timer and store current state on change of button pressed
self.button_timers[b.type.raw] = 1 if b.pressed else 0
self.button_change_states[b.type.raw] = {"standstill": CS.cruiseState.standstill, "enabled": enabled}
def initialize_v_cruise(self, CS, experimental_mode: bool) -> None:
# initializing is handled by the PCM
if self.CP.pcmCruise:
return
initial = V_CRUISE_INITIAL_EXPERIMENTAL_MODE if experimental_mode else V_CRUISE_INITIAL
# 250kph or above probably means we never had a set speed
if any(b.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for b in CS.buttonEvents) and self.v_cruise_kph_last < 250:
self.v_cruise_kph = self.v_cruise_kph_last
else:
self.v_cruise_kph = int(round(clip(CS.vEgo * CV.MS_TO_KPH, initial, V_CRUISE_MAX)))
self.v_cruise_cluster_kph = self.v_cruise_kph
def apply_deadzone(error, deadzone):
if error > deadzone:
error -= deadzone
elif error < - deadzone:
error += deadzone
else:
error = 0.
return error
def apply_center_deadzone(error, deadzone):
if (error > - deadzone) and (error < deadzone):
error = 0.
return error
def rate_limit(new_value, last_value, dw_step, up_step):
return clip(new_value, last_value + dw_step, last_value + up_step)
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
if len(psis) != CONTROL_N:
psis = [0.0]*CONTROL_N
curvatures = [0.0]*CONTROL_N
curvature_rates = [0.0]*CONTROL_N
v_ego = max(MIN_SPEED, v_ego)
# TODO this needs more thought, use .2s extra for now to estimate other delays
delay = CP.steerActuatorDelay + .2
# MPC can plan to turn the wheel and turn back before t_delay. This means
# in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature
current_curvature_desired = curvatures[0]
psi = interp(delay, T_IDXS[:CONTROL_N], psis)
average_curvature_desired = psi / (v_ego * delay)
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
# This is the "desired rate of the setpoint" not an actual desired rate
desired_curvature_rate = curvature_rates[0]
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
safe_desired_curvature_rate = clip(desired_curvature_rate,
-max_curvature_rate,
max_curvature_rate)
safe_desired_curvature = clip(desired_curvature,
current_curvature_desired - max_curvature_rate * DT_MDL,
current_curvature_desired + max_curvature_rate * DT_MDL)
return safe_desired_curvature, safe_desired_curvature_rate
def get_friction(lateral_accel_error: float, lateral_accel_deadzone: float, friction_threshold: float, torque_params: car.CarParams.LateralTorqueTuning, friction_compensation: bool) -> float:
friction_interp = interp(
apply_center_deadzone(lateral_accel_error, lateral_accel_deadzone),
[-friction_threshold, friction_threshold],
[-torque_params.friction, torque_params.friction]
)
friction = float(friction_interp) if friction_compensation else 0.0
return friction
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
# ToDo: Try relative error, and absolute speed
if len(modelV2.temporalPose.trans):
vel_err = clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
return float(vel_err)
return 0.0