|
|
|
#!/usr/bin/env python3
|
|
|
|
import pytest
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
from collections import defaultdict
|
|
|
|
from parameterized import parameterized
|
|
|
|
|
|
|
|
from cereal import car
|
|
|
|
from openpilot.selfdrive.car.car_helpers import interfaces
|
|
|
|
from openpilot.selfdrive.car.fingerprints import FW_VERSIONS
|
|
|
|
from openpilot.selfdrive.car.fw_versions import ESSENTIAL_ECUS, FW_QUERY_CONFIGS, FUZZY_EXCLUDE_ECUS, VERSIONS, build_fw_dict, \
|
|
|
|
match_fw_to_car, get_brand_ecu_matches, get_fw_versions, get_present_ecus
|
|
|
|
from openpilot.selfdrive.car.vin import get_vin
|
|
|
|
|
|
|
|
CarFw = car.CarParams.CarFw
|
|
|
|
Ecu = car.CarParams.Ecu
|
|
|
|
|
|
|
|
ECU_NAME = {v: k for k, v in Ecu.schema.enumerants.items()}
|
|
|
|
|
|
|
|
|
|
|
|
class FakeSocket:
|
|
|
|
def receive(self, non_blocking=False):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def send(self, msg):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class TestFwFingerprint:
|
|
|
|
def assertFingerprints(self, candidates, expected):
|
|
|
|
candidates = list(candidates)
|
|
|
|
assert len(candidates) == 1, f"got more than one candidate: {candidates}"
|
|
|
|
assert candidates[0] == expected
|
|
|
|
|
|
|
|
@parameterized.expand([(b, c, e[c], n) for b, e in VERSIONS.items() for c in e for n in (True, False)])
|
|
|
|
def test_exact_match(self, brand, car_model, ecus, test_non_essential):
|
|
|
|
config = FW_QUERY_CONFIGS[brand]
|
|
|
|
CP = car.CarParams.new_message()
|
|
|
|
for _ in range(100):
|
|
|
|
fw = []
|
|
|
|
for ecu, fw_versions in ecus.items():
|
|
|
|
# Assume non-essential ECUs apply to all cars, so we catch cases where Car A with
|
|
|
|
# missing ECUs won't match to Car B where only Car B has labeled non-essential ECUs
|
|
|
|
if ecu[0] in config.non_essential_ecus and test_non_essential:
|
|
|
|
continue
|
|
|
|
|
|
|
|
ecu_name, addr, sub_addr = ecu
|
|
|
|
fw.append({"ecu": ecu_name, "fwVersion": random.choice(fw_versions), 'brand': brand,
|
|
|
|
"address": addr, "subAddress": 0 if sub_addr is None else sub_addr})
|
|
|
|
CP.carFw = fw
|
|
|
|
_, matches = match_fw_to_car(CP.carFw, CP.carVin, allow_fuzzy=False)
|
|
|
|
if not test_non_essential:
|
|
|
|
self.assertFingerprints(matches, car_model)
|
|
|
|
else:
|
|
|
|
# if we're removing ECUs we expect some match loss, but it shouldn't mismatch
|
|
|
|
if len(matches) != 0:
|
|
|
|
self.assertFingerprints(matches, car_model)
|
|
|
|
|
HKG: use platform codes to fuzzy fingerprint (#28531)
* get gas/ev/hev from FW (not all correct, poc)
* add test for essential ecus for fuzzy fingerprinting
* kinda works
* stash
* clean up
* add code
* simpler
* use the function
* test it with our cars
* no re
no re
no re
* debugging
* handle empty dict
* simpl
* this is promising
start on making existing fingerprinting functions use the config, instead of entirely replacing them
* needs to allow 1 match
* lay out how this should look
* changes
* executable
* some work
* use config
* fuzzy ecus
* config test
* comment and some clean up
* test platform codes
* use regex, simpler and fixes bug
* in func
* rm bad func
* typing for new func and remove old from dc
* todo done
* tested!
* remove fake platform codes
* thought we needed this, but actually...
* not needed
* not applicable any more
* use config for essential ecus
* first draft of test to make adding/removing fuzzy FP platform intentional
* compile
* clean up test
* even cleaner
* fix default ecus type
* temp fix
* this is mostly in tests now
* test every fuzzy ecu fw returns one platform code
* experiment with dates
* Revert "experiment with dates"
This reverts commit 3251b9cc5c3ca41ca92c8b75ad9b2234b720aa0b.
* clean that up
* comment
* test
* work on all cars
* fix fuzz_fw_fingerprint
* comment
* get first by search
* bit more clean up
* and more
* use compiled pattern for nicer syntax
* default
* flip dat around, much cleaner
* clean up hyundai test a bit
* flip order
same here
* rename test and flip subTest
* fix pylint
* revert fw changes
revert fw changes
* line
* add original functions to test
* needs to be a list
* cmt
* draft (need to count one ecu as a match)
* tiny clean up
* todo: date range
* only in notebook
* remove comment (still can be either list or set)
* same, only notebook
* more consistent signature
* copilot inspired
* copilot no good
* test for date parsing
* better name
* good, now we don't have to worry about the dates mismatching in another test/logic
* comment up+
* some stuff
* clean up
fix test
fix test
* test
* comment
* use utils
* clean up (utils are cleaner and less buggy)
* clean up (utils are cleaner and less buggy)
* fixup test
* use a dash (prettier) and remove some platforms that can fingerprint now!
* compile global pattern
* same as what we do in values
* remove comments
* fuzzy_get_platform_codes is one or none here
* more clean up
* sort imports
* woah woah woah
* add comment
* fix reassigning different types
* add types
* adapt fuzzy test recently added (nice it caught this!)
* update lock
* options
comments
* stash
* comments and fixes
* better comments
* better
* test: run on exact fuzzy matching logic, same results!
* use match_fw_to_car
* test all fw
* ex
* unused random
* this is a possibility
* this is more clear
* fix
* revert
* revert to needing both ECUs to match to reduce false positives, test
* fix excluded platform test :( but it's ok
* add comment
* we actually want to only test fuzzy ecus to make it explicit
* fix mypy
* comment for tomorrow
* just add matches with fuzzy FP
* add comment
* this was the cleanest I could think of, but still working on it. not very easy to understand
* think this is better, but also worse...
* comment: reframing how this works
* revert back to what we did before
* was swapped
* else set
* remove old comment
* fixes from merge
* remove fuzzy_min_match_count from this pr
* fix static analysis
* also unused
* different method first draft
* copy existing fuzzy func
* check all possible ecus exist, only platform codes, slightly refactor main loop
* fix
* Revert recent
Revert "fix"
This reverts commit 5cdb7bda835f1e48e750ab4195e891afe08e11ea.
Revert "check all possible ecus exist, only platform codes, slightly refactor main loop"
This reverts commit d3e918fa20fa4ce881445850f5f7428a3c11adf8.
Revert "copy existing fuzzy func"
This reverts commit 34c8c0545097c84f55f4b4f61907606c93760ddd.
Revert "different method first draft"
This reverts commit b91139055d7d1802c1eb726504798c156a183c9c.
* new func
* fixup test
* remove changes from v1 from fw_versions.py
* clean up a bit
* return part as part of code
* fix test
* add original fuzzy function
* add an ecu match if the date is within range (or date doesn't exist)
* add format for what we're going to do
* not working stash
* the exact matching function does more of what we want with less code and less custom logic
* we don't care about found versions, only codes and dates
* actually we do have an exception
* this works pretty nicely now
* up here
* this is better
* some minor clean up
* old function=now junk
* fix platform code test
* remove old platform code function
* now rename _new to
* use FW_QUERY_CONFIG
* clean up imports
* rename that too
* one line
* correct typing
correct typing
* draft tests
* so that works
* fixup excluded platform test now too
* this is tested by excluded platform test
* test parts and dates
* remove old comment
* old import
* take platform code stuff out of FwQueryConfig
* fix test
* revert debug script
* flip order
* make this a set by default
* revert this part
* correct typing
* clean up comments
* clean that test up too/pylint
* combine these three tests ina clean way
* not right
* more general
* be consistent with quotes
* comment
* comment
* comment in fw_versions
* flip order
* this is more readable
* could test all this, but it's tested in test_hyundai and doesn't do a lot here
* only assert brands which use this
* invalidate all CAN FD ICE and hybrid
* tuple
* can get away without filtering
* add comment reasons
* fix
* some review suggestions
* this works (first draft)
* this is better
* script to print platform codes and dates
* sanity check for dates are in correct ecus and platforms
* mypy
* better variable name and comment
* rename
* same
* slightly better name
* subset
* exclude platforms and live car without dates
* consistent
* self explan
* better name
* test to make sure the functions agree
* clean that up
* comment
* we get other responses from queries not in DB, only check any
* not used or typed
2 years ago
|
|
|
@parameterized.expand([(b, c, e[c]) for b, e in VERSIONS.items() for c in e])
|
|
|
|
def test_custom_fuzzy_match(self, brand, car_model, ecus):
|
|
|
|
# Assert brand-specific fuzzy fingerprinting function doesn't disagree with standard fuzzy function
|
|
|
|
config = FW_QUERY_CONFIGS[brand]
|
|
|
|
if config.match_fw_to_car_fuzzy is None:
|
|
|
|
pytest.skip("Brand does not implement custom fuzzy fingerprinting function")
|
HKG: use platform codes to fuzzy fingerprint (#28531)
* get gas/ev/hev from FW (not all correct, poc)
* add test for essential ecus for fuzzy fingerprinting
* kinda works
* stash
* clean up
* add code
* simpler
* use the function
* test it with our cars
* no re
no re
no re
* debugging
* handle empty dict
* simpl
* this is promising
start on making existing fingerprinting functions use the config, instead of entirely replacing them
* needs to allow 1 match
* lay out how this should look
* changes
* executable
* some work
* use config
* fuzzy ecus
* config test
* comment and some clean up
* test platform codes
* use regex, simpler and fixes bug
* in func
* rm bad func
* typing for new func and remove old from dc
* todo done
* tested!
* remove fake platform codes
* thought we needed this, but actually...
* not needed
* not applicable any more
* use config for essential ecus
* first draft of test to make adding/removing fuzzy FP platform intentional
* compile
* clean up test
* even cleaner
* fix default ecus type
* temp fix
* this is mostly in tests now
* test every fuzzy ecu fw returns one platform code
* experiment with dates
* Revert "experiment with dates"
This reverts commit 3251b9cc5c3ca41ca92c8b75ad9b2234b720aa0b.
* clean that up
* comment
* test
* work on all cars
* fix fuzz_fw_fingerprint
* comment
* get first by search
* bit more clean up
* and more
* use compiled pattern for nicer syntax
* default
* flip dat around, much cleaner
* clean up hyundai test a bit
* flip order
same here
* rename test and flip subTest
* fix pylint
* revert fw changes
revert fw changes
* line
* add original functions to test
* needs to be a list
* cmt
* draft (need to count one ecu as a match)
* tiny clean up
* todo: date range
* only in notebook
* remove comment (still can be either list or set)
* same, only notebook
* more consistent signature
* copilot inspired
* copilot no good
* test for date parsing
* better name
* good, now we don't have to worry about the dates mismatching in another test/logic
* comment up+
* some stuff
* clean up
fix test
fix test
* test
* comment
* use utils
* clean up (utils are cleaner and less buggy)
* clean up (utils are cleaner and less buggy)
* fixup test
* use a dash (prettier) and remove some platforms that can fingerprint now!
* compile global pattern
* same as what we do in values
* remove comments
* fuzzy_get_platform_codes is one or none here
* more clean up
* sort imports
* woah woah woah
* add comment
* fix reassigning different types
* add types
* adapt fuzzy test recently added (nice it caught this!)
* update lock
* options
comments
* stash
* comments and fixes
* better comments
* better
* test: run on exact fuzzy matching logic, same results!
* use match_fw_to_car
* test all fw
* ex
* unused random
* this is a possibility
* this is more clear
* fix
* revert
* revert to needing both ECUs to match to reduce false positives, test
* fix excluded platform test :( but it's ok
* add comment
* we actually want to only test fuzzy ecus to make it explicit
* fix mypy
* comment for tomorrow
* just add matches with fuzzy FP
* add comment
* this was the cleanest I could think of, but still working on it. not very easy to understand
* think this is better, but also worse...
* comment: reframing how this works
* revert back to what we did before
* was swapped
* else set
* remove old comment
* fixes from merge
* remove fuzzy_min_match_count from this pr
* fix static analysis
* also unused
* different method first draft
* copy existing fuzzy func
* check all possible ecus exist, only platform codes, slightly refactor main loop
* fix
* Revert recent
Revert "fix"
This reverts commit 5cdb7bda835f1e48e750ab4195e891afe08e11ea.
Revert "check all possible ecus exist, only platform codes, slightly refactor main loop"
This reverts commit d3e918fa20fa4ce881445850f5f7428a3c11adf8.
Revert "copy existing fuzzy func"
This reverts commit 34c8c0545097c84f55f4b4f61907606c93760ddd.
Revert "different method first draft"
This reverts commit b91139055d7d1802c1eb726504798c156a183c9c.
* new func
* fixup test
* remove changes from v1 from fw_versions.py
* clean up a bit
* return part as part of code
* fix test
* add original fuzzy function
* add an ecu match if the date is within range (or date doesn't exist)
* add format for what we're going to do
* not working stash
* the exact matching function does more of what we want with less code and less custom logic
* we don't care about found versions, only codes and dates
* actually we do have an exception
* this works pretty nicely now
* up here
* this is better
* some minor clean up
* old function=now junk
* fix platform code test
* remove old platform code function
* now rename _new to
* use FW_QUERY_CONFIG
* clean up imports
* rename that too
* one line
* correct typing
correct typing
* draft tests
* so that works
* fixup excluded platform test now too
* this is tested by excluded platform test
* test parts and dates
* remove old comment
* old import
* take platform code stuff out of FwQueryConfig
* fix test
* revert debug script
* flip order
* make this a set by default
* revert this part
* correct typing
* clean up comments
* clean that test up too/pylint
* combine these three tests ina clean way
* not right
* more general
* be consistent with quotes
* comment
* comment
* comment in fw_versions
* flip order
* this is more readable
* could test all this, but it's tested in test_hyundai and doesn't do a lot here
* only assert brands which use this
* invalidate all CAN FD ICE and hybrid
* tuple
* can get away without filtering
* add comment reasons
* fix
* some review suggestions
* this works (first draft)
* this is better
* script to print platform codes and dates
* sanity check for dates are in correct ecus and platforms
* mypy
* better variable name and comment
* rename
* same
* slightly better name
* subset
* exclude platforms and live car without dates
* consistent
* self explan
* better name
* test to make sure the functions agree
* clean that up
* comment
* we get other responses from queries not in DB, only check any
* not used or typed
2 years ago
|
|
|
|
|
|
|
CP = car.CarParams.new_message()
|
|
|
|
for _ in range(5):
|
|
|
|
fw = []
|
|
|
|
for ecu, fw_versions in ecus.items():
|
|
|
|
ecu_name, addr, sub_addr = ecu
|
|
|
|
fw.append({"ecu": ecu_name, "fwVersion": random.choice(fw_versions), 'brand': brand,
|
|
|
|
"address": addr, "subAddress": 0 if sub_addr is None else sub_addr})
|
|
|
|
CP.carFw = fw
|
|
|
|
_, matches = match_fw_to_car(CP.carFw, CP.carVin, allow_exact=False, log=False)
|
|
|
|
brand_matches = config.match_fw_to_car_fuzzy(build_fw_dict(CP.carFw), CP.carVin, VERSIONS[brand])
|
HKG: use platform codes to fuzzy fingerprint (#28531)
* get gas/ev/hev from FW (not all correct, poc)
* add test for essential ecus for fuzzy fingerprinting
* kinda works
* stash
* clean up
* add code
* simpler
* use the function
* test it with our cars
* no re
no re
no re
* debugging
* handle empty dict
* simpl
* this is promising
start on making existing fingerprinting functions use the config, instead of entirely replacing them
* needs to allow 1 match
* lay out how this should look
* changes
* executable
* some work
* use config
* fuzzy ecus
* config test
* comment and some clean up
* test platform codes
* use regex, simpler and fixes bug
* in func
* rm bad func
* typing for new func and remove old from dc
* todo done
* tested!
* remove fake platform codes
* thought we needed this, but actually...
* not needed
* not applicable any more
* use config for essential ecus
* first draft of test to make adding/removing fuzzy FP platform intentional
* compile
* clean up test
* even cleaner
* fix default ecus type
* temp fix
* this is mostly in tests now
* test every fuzzy ecu fw returns one platform code
* experiment with dates
* Revert "experiment with dates"
This reverts commit 3251b9cc5c3ca41ca92c8b75ad9b2234b720aa0b.
* clean that up
* comment
* test
* work on all cars
* fix fuzz_fw_fingerprint
* comment
* get first by search
* bit more clean up
* and more
* use compiled pattern for nicer syntax
* default
* flip dat around, much cleaner
* clean up hyundai test a bit
* flip order
same here
* rename test and flip subTest
* fix pylint
* revert fw changes
revert fw changes
* line
* add original functions to test
* needs to be a list
* cmt
* draft (need to count one ecu as a match)
* tiny clean up
* todo: date range
* only in notebook
* remove comment (still can be either list or set)
* same, only notebook
* more consistent signature
* copilot inspired
* copilot no good
* test for date parsing
* better name
* good, now we don't have to worry about the dates mismatching in another test/logic
* comment up+
* some stuff
* clean up
fix test
fix test
* test
* comment
* use utils
* clean up (utils are cleaner and less buggy)
* clean up (utils are cleaner and less buggy)
* fixup test
* use a dash (prettier) and remove some platforms that can fingerprint now!
* compile global pattern
* same as what we do in values
* remove comments
* fuzzy_get_platform_codes is one or none here
* more clean up
* sort imports
* woah woah woah
* add comment
* fix reassigning different types
* add types
* adapt fuzzy test recently added (nice it caught this!)
* update lock
* options
comments
* stash
* comments and fixes
* better comments
* better
* test: run on exact fuzzy matching logic, same results!
* use match_fw_to_car
* test all fw
* ex
* unused random
* this is a possibility
* this is more clear
* fix
* revert
* revert to needing both ECUs to match to reduce false positives, test
* fix excluded platform test :( but it's ok
* add comment
* we actually want to only test fuzzy ecus to make it explicit
* fix mypy
* comment for tomorrow
* just add matches with fuzzy FP
* add comment
* this was the cleanest I could think of, but still working on it. not very easy to understand
* think this is better, but also worse...
* comment: reframing how this works
* revert back to what we did before
* was swapped
* else set
* remove old comment
* fixes from merge
* remove fuzzy_min_match_count from this pr
* fix static analysis
* also unused
* different method first draft
* copy existing fuzzy func
* check all possible ecus exist, only platform codes, slightly refactor main loop
* fix
* Revert recent
Revert "fix"
This reverts commit 5cdb7bda835f1e48e750ab4195e891afe08e11ea.
Revert "check all possible ecus exist, only platform codes, slightly refactor main loop"
This reverts commit d3e918fa20fa4ce881445850f5f7428a3c11adf8.
Revert "copy existing fuzzy func"
This reverts commit 34c8c0545097c84f55f4b4f61907606c93760ddd.
Revert "different method first draft"
This reverts commit b91139055d7d1802c1eb726504798c156a183c9c.
* new func
* fixup test
* remove changes from v1 from fw_versions.py
* clean up a bit
* return part as part of code
* fix test
* add original fuzzy function
* add an ecu match if the date is within range (or date doesn't exist)
* add format for what we're going to do
* not working stash
* the exact matching function does more of what we want with less code and less custom logic
* we don't care about found versions, only codes and dates
* actually we do have an exception
* this works pretty nicely now
* up here
* this is better
* some minor clean up
* old function=now junk
* fix platform code test
* remove old platform code function
* now rename _new to
* use FW_QUERY_CONFIG
* clean up imports
* rename that too
* one line
* correct typing
correct typing
* draft tests
* so that works
* fixup excluded platform test now too
* this is tested by excluded platform test
* test parts and dates
* remove old comment
* old import
* take platform code stuff out of FwQueryConfig
* fix test
* revert debug script
* flip order
* make this a set by default
* revert this part
* correct typing
* clean up comments
* clean that test up too/pylint
* combine these three tests ina clean way
* not right
* more general
* be consistent with quotes
* comment
* comment
* comment in fw_versions
* flip order
* this is more readable
* could test all this, but it's tested in test_hyundai and doesn't do a lot here
* only assert brands which use this
* invalidate all CAN FD ICE and hybrid
* tuple
* can get away without filtering
* add comment reasons
* fix
* some review suggestions
* this works (first draft)
* this is better
* script to print platform codes and dates
* sanity check for dates are in correct ecus and platforms
* mypy
* better variable name and comment
* rename
* same
* slightly better name
* subset
* exclude platforms and live car without dates
* consistent
* self explan
* better name
* test to make sure the functions agree
* clean that up
* comment
* we get other responses from queries not in DB, only check any
* not used or typed
2 years ago
|
|
|
|
|
|
|
# If both have matches, they must agree
|
|
|
|
if len(matches) == 1 and len(brand_matches) == 1:
|
|
|
|
assert matches == brand_matches
|
HKG: use platform codes to fuzzy fingerprint (#28531)
* get gas/ev/hev from FW (not all correct, poc)
* add test for essential ecus for fuzzy fingerprinting
* kinda works
* stash
* clean up
* add code
* simpler
* use the function
* test it with our cars
* no re
no re
no re
* debugging
* handle empty dict
* simpl
* this is promising
start on making existing fingerprinting functions use the config, instead of entirely replacing them
* needs to allow 1 match
* lay out how this should look
* changes
* executable
* some work
* use config
* fuzzy ecus
* config test
* comment and some clean up
* test platform codes
* use regex, simpler and fixes bug
* in func
* rm bad func
* typing for new func and remove old from dc
* todo done
* tested!
* remove fake platform codes
* thought we needed this, but actually...
* not needed
* not applicable any more
* use config for essential ecus
* first draft of test to make adding/removing fuzzy FP platform intentional
* compile
* clean up test
* even cleaner
* fix default ecus type
* temp fix
* this is mostly in tests now
* test every fuzzy ecu fw returns one platform code
* experiment with dates
* Revert "experiment with dates"
This reverts commit 3251b9cc5c3ca41ca92c8b75ad9b2234b720aa0b.
* clean that up
* comment
* test
* work on all cars
* fix fuzz_fw_fingerprint
* comment
* get first by search
* bit more clean up
* and more
* use compiled pattern for nicer syntax
* default
* flip dat around, much cleaner
* clean up hyundai test a bit
* flip order
same here
* rename test and flip subTest
* fix pylint
* revert fw changes
revert fw changes
* line
* add original functions to test
* needs to be a list
* cmt
* draft (need to count one ecu as a match)
* tiny clean up
* todo: date range
* only in notebook
* remove comment (still can be either list or set)
* same, only notebook
* more consistent signature
* copilot inspired
* copilot no good
* test for date parsing
* better name
* good, now we don't have to worry about the dates mismatching in another test/logic
* comment up+
* some stuff
* clean up
fix test
fix test
* test
* comment
* use utils
* clean up (utils are cleaner and less buggy)
* clean up (utils are cleaner and less buggy)
* fixup test
* use a dash (prettier) and remove some platforms that can fingerprint now!
* compile global pattern
* same as what we do in values
* remove comments
* fuzzy_get_platform_codes is one or none here
* more clean up
* sort imports
* woah woah woah
* add comment
* fix reassigning different types
* add types
* adapt fuzzy test recently added (nice it caught this!)
* update lock
* options
comments
* stash
* comments and fixes
* better comments
* better
* test: run on exact fuzzy matching logic, same results!
* use match_fw_to_car
* test all fw
* ex
* unused random
* this is a possibility
* this is more clear
* fix
* revert
* revert to needing both ECUs to match to reduce false positives, test
* fix excluded platform test :( but it's ok
* add comment
* we actually want to only test fuzzy ecus to make it explicit
* fix mypy
* comment for tomorrow
* just add matches with fuzzy FP
* add comment
* this was the cleanest I could think of, but still working on it. not very easy to understand
* think this is better, but also worse...
* comment: reframing how this works
* revert back to what we did before
* was swapped
* else set
* remove old comment
* fixes from merge
* remove fuzzy_min_match_count from this pr
* fix static analysis
* also unused
* different method first draft
* copy existing fuzzy func
* check all possible ecus exist, only platform codes, slightly refactor main loop
* fix
* Revert recent
Revert "fix"
This reverts commit 5cdb7bda835f1e48e750ab4195e891afe08e11ea.
Revert "check all possible ecus exist, only platform codes, slightly refactor main loop"
This reverts commit d3e918fa20fa4ce881445850f5f7428a3c11adf8.
Revert "copy existing fuzzy func"
This reverts commit 34c8c0545097c84f55f4b4f61907606c93760ddd.
Revert "different method first draft"
This reverts commit b91139055d7d1802c1eb726504798c156a183c9c.
* new func
* fixup test
* remove changes from v1 from fw_versions.py
* clean up a bit
* return part as part of code
* fix test
* add original fuzzy function
* add an ecu match if the date is within range (or date doesn't exist)
* add format for what we're going to do
* not working stash
* the exact matching function does more of what we want with less code and less custom logic
* we don't care about found versions, only codes and dates
* actually we do have an exception
* this works pretty nicely now
* up here
* this is better
* some minor clean up
* old function=now junk
* fix platform code test
* remove old platform code function
* now rename _new to
* use FW_QUERY_CONFIG
* clean up imports
* rename that too
* one line
* correct typing
correct typing
* draft tests
* so that works
* fixup excluded platform test now too
* this is tested by excluded platform test
* test parts and dates
* remove old comment
* old import
* take platform code stuff out of FwQueryConfig
* fix test
* revert debug script
* flip order
* make this a set by default
* revert this part
* correct typing
* clean up comments
* clean that test up too/pylint
* combine these three tests ina clean way
* not right
* more general
* be consistent with quotes
* comment
* comment
* comment in fw_versions
* flip order
* this is more readable
* could test all this, but it's tested in test_hyundai and doesn't do a lot here
* only assert brands which use this
* invalidate all CAN FD ICE and hybrid
* tuple
* can get away without filtering
* add comment reasons
* fix
* some review suggestions
* this works (first draft)
* this is better
* script to print platform codes and dates
* sanity check for dates are in correct ecus and platforms
* mypy
* better variable name and comment
* rename
* same
* slightly better name
* subset
* exclude platforms and live car without dates
* consistent
* self explan
* better name
* test to make sure the functions agree
* clean that up
* comment
* we get other responses from queries not in DB, only check any
* not used or typed
2 years ago
|
|
|
|
|
|
|
@parameterized.expand([(b, c, e[c]) for b, e in VERSIONS.items() for c in e])
|
|
|
|
def test_fuzzy_match_ecu_count(self, brand, car_model, ecus):
|
|
|
|
# Asserts that fuzzy matching does not count matching FW, but ECU address keys
|
|
|
|
valid_ecus = [e for e in ecus if e[0] not in FUZZY_EXCLUDE_ECUS]
|
|
|
|
if not len(valid_ecus):
|
|
|
|
pytest.skip("Car model has no compatible ECUs for fuzzy matching")
|
|
|
|
|
|
|
|
fw = []
|
|
|
|
for ecu in valid_ecus:
|
|
|
|
ecu_name, addr, sub_addr = ecu
|
|
|
|
for _ in range(5):
|
|
|
|
# Add multiple FW versions to simulate ECU returning to multiple queries in a brand
|
|
|
|
fw.append({"ecu": ecu_name, "fwVersion": random.choice(ecus[ecu]), 'brand': brand,
|
|
|
|
"address": addr, "subAddress": 0 if sub_addr is None else sub_addr})
|
|
|
|
CP = car.CarParams.new_message(carFw=fw)
|
|
|
|
_, matches = match_fw_to_car(CP.carFw, CP.carVin, allow_exact=False, log=False)
|
|
|
|
|
|
|
|
# Assert no match if there are not enough unique ECUs
|
|
|
|
unique_ecus = {(f['address'], f['subAddress']) for f in fw}
|
|
|
|
if len(unique_ecus) < 2:
|
|
|
|
assert len(matches) == 0, car_model
|
|
|
|
# There won't always be a match due to shared FW, but if there is it should be correct
|
|
|
|
elif len(matches):
|
|
|
|
self.assertFingerprints(matches, car_model)
|
|
|
|
|
|
|
|
def test_fw_version_lists(self, subtests):
|
|
|
|
for car_model, ecus in FW_VERSIONS.items():
|
|
|
|
with subtests.test(car_model=car_model.value):
|
|
|
|
for ecu, ecu_fw in ecus.items():
|
|
|
|
with subtests.test(ecu):
|
|
|
|
duplicates = {fw for fw in ecu_fw if ecu_fw.count(fw) > 1}
|
|
|
|
assert not len(duplicates), f'{car_model}: Duplicate FW versions: Ecu.{ECU_NAME[ecu[0]]}, {duplicates}'
|
|
|
|
assert len(ecu_fw) > 0, f'{car_model}: No FW versions: Ecu.{ECU_NAME[ecu[0]]}'
|
|
|
|
|
|
|
|
def test_all_addrs_map_to_one_ecu(self):
|
|
|
|
for brand, cars in VERSIONS.items():
|
|
|
|
addr_to_ecu = defaultdict(set)
|
|
|
|
for ecus in cars.values():
|
|
|
|
for ecu_type, addr, sub_addr in ecus.keys():
|
|
|
|
addr_to_ecu[(addr, sub_addr)].add(ecu_type)
|
|
|
|
ecus_for_addr = addr_to_ecu[(addr, sub_addr)]
|
|
|
|
ecu_strings = ", ".join([f'Ecu.{ECU_NAME[ecu]}' for ecu in ecus_for_addr])
|
|
|
|
assert len(ecus_for_addr) <= 1, f"{brand} has multiple ECUs that map to one address: {ecu_strings} -> ({hex(addr)}, {sub_addr})"
|
|
|
|
|
|
|
|
def test_data_collection_ecus(self, subtests):
|
|
|
|
# Asserts no extra ECUs are in the fingerprinting database
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
for car_model, ecus in VERSIONS[brand].items():
|
|
|
|
bad_ecus = set(ecus).intersection(config.extra_ecus)
|
|
|
|
with subtests.test(car_model=car_model.value):
|
|
|
|
assert not len(bad_ecus), f'{car_model}: Fingerprints contain ECUs added for data collection: {bad_ecus}'
|
|
|
|
|
|
|
|
def test_blacklisted_ecus(self, subtests):
|
|
|
|
blacklisted_addrs = (0x7c4, 0x7d0) # includes A/C ecu and an unknown ecu
|
|
|
|
for car_model, ecus in FW_VERSIONS.items():
|
|
|
|
with subtests.test(car_model=car_model.value):
|
|
|
|
CP = interfaces[car_model][0].get_non_essential_params(car_model)
|
|
|
|
if CP.carName == 'subaru':
|
|
|
|
for ecu in ecus.keys():
|
|
|
|
assert ecu[1] not in blacklisted_addrs, f'{car_model}: Blacklisted ecu: (Ecu.{ECU_NAME[ecu[0]]}, {hex(ecu[1])})'
|
|
|
|
|
|
|
|
elif CP.carName == "chrysler":
|
|
|
|
# Some HD trucks have a combined TCM and ECM
|
|
|
|
if CP.carFingerprint.startswith("RAM HD"):
|
|
|
|
for ecu in ecus.keys():
|
|
|
|
assert ecu[0] != Ecu.transmission, f"{car_model}: Blacklisted ecu: (Ecu.{ECU_NAME[ecu[0]]}, {hex(ecu[1])})"
|
|
|
|
|
|
|
|
def test_non_essential_ecus(self, subtests):
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
with subtests.test(brand):
|
|
|
|
# These ECUs are already not in ESSENTIAL_ECUS which the fingerprint functions give a pass if missing
|
|
|
|
unnecessary_non_essential_ecus = set(config.non_essential_ecus) - set(ESSENTIAL_ECUS)
|
|
|
|
assert unnecessary_non_essential_ecus == set(), "Declaring non-essential ECUs non-essential is not required: " + \
|
|
|
|
f"{', '.join([f'Ecu.{ECU_NAME[ecu]}' for ecu in unnecessary_non_essential_ecus])}"
|
|
|
|
|
|
|
|
def test_missing_versions_and_configs(self, subtests):
|
|
|
|
brand_versions = set(VERSIONS.keys())
|
|
|
|
brand_configs = set(FW_QUERY_CONFIGS.keys())
|
|
|
|
if len(brand_configs - brand_versions):
|
|
|
|
with subtests.test():
|
|
|
|
pytest.fail(f"Brands do not implement FW_VERSIONS: {brand_configs - brand_versions}")
|
|
|
|
|
|
|
|
if len(brand_versions - brand_configs):
|
|
|
|
with subtests.test():
|
|
|
|
pytest.fail(f"Brands do not implement FW_QUERY_CONFIG: {brand_versions - brand_configs}")
|
|
|
|
|
|
|
|
# Ensure each brand has at least 1 ECU to query, and extra ECU retrieval
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
assert len(config.get_all_ecus({}, include_extra_ecus=False)) == 0
|
|
|
|
assert config.get_all_ecus({}) == set(config.extra_ecus)
|
|
|
|
assert len(config.get_all_ecus(VERSIONS[brand])) > 0
|
|
|
|
|
|
|
|
def test_fw_request_ecu_whitelist(self, subtests):
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
with subtests.test(brand=brand):
|
|
|
|
whitelisted_ecus = {ecu for r in config.requests for ecu in r.whitelist_ecus}
|
|
|
|
brand_ecus = {fw[0] for car_fw in VERSIONS[brand].values() for fw in car_fw}
|
|
|
|
brand_ecus |= {ecu[0] for ecu in config.extra_ecus}
|
|
|
|
|
|
|
|
# each ecu in brand's fw versions + extra ecus needs to be whitelisted at least once
|
|
|
|
ecus_not_whitelisted = brand_ecus - whitelisted_ecus
|
|
|
|
|
|
|
|
ecu_strings = ", ".join([f'Ecu.{ECU_NAME[ecu]}' for ecu in ecus_not_whitelisted])
|
|
|
|
assert not (len(whitelisted_ecus) and len(ecus_not_whitelisted)), \
|
|
|
|
f'{brand.title()}: ECUs not in any FW query whitelists: {ecu_strings}'
|
|
|
|
|
|
|
|
def test_fw_requests(self, subtests):
|
|
|
|
# Asserts equal length request and response lists
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
with subtests.test(brand=brand):
|
|
|
|
for request_obj in config.requests:
|
|
|
|
assert len(request_obj.request) == len(request_obj.response)
|
|
|
|
|
|
|
|
# No request on the OBD port (bus 1, multiplexed) should be run on an aux panda
|
|
|
|
assert not (request_obj.auxiliary and request_obj.bus == 1 and request_obj.obd_multiplexing), \
|
|
|
|
f"{brand.title()}: OBD multiplexed request is marked auxiliary: {request_obj}"
|
|
|
|
|
|
|
|
def test_brand_ecu_matches(self):
|
|
|
|
empty_response = {brand: set() for brand in FW_QUERY_CONFIGS}
|
|
|
|
assert get_brand_ecu_matches(set()) == empty_response
|
|
|
|
|
|
|
|
# we ignore bus
|
|
|
|
expected_response = empty_response | {'toyota': {(0x750, 0xf)}}
|
|
|
|
assert get_brand_ecu_matches({(0x758, 0xf, 99)}) == expected_response
|
|
|
|
|
|
|
|
|
|
|
|
class TestFwFingerprintTiming:
|
|
|
|
N: int = 5
|
|
|
|
TOL: float = 0.05
|
|
|
|
|
|
|
|
# for patched functions
|
|
|
|
current_obd_multiplexing: bool
|
|
|
|
total_time: float
|
|
|
|
|
|
|
|
def fake_set_obd_multiplexing(self, _, obd_multiplexing):
|
|
|
|
"""The 10Hz blocking params loop adds on average 50ms to the query time for each OBD multiplexing change"""
|
|
|
|
if obd_multiplexing != self.current_obd_multiplexing:
|
|
|
|
self.current_obd_multiplexing = obd_multiplexing
|
|
|
|
self.total_time += 0.1 / 2
|
|
|
|
|
|
|
|
def fake_get_data(self, timeout):
|
|
|
|
self.total_time += timeout
|
|
|
|
return {}
|
|
|
|
|
|
|
|
def _benchmark_brand(self, brand, num_pandas, mocker):
|
|
|
|
fake_socket = FakeSocket()
|
|
|
|
self.total_time = 0
|
|
|
|
mocker.patch("openpilot.selfdrive.car.fw_versions.set_obd_multiplexing", self.fake_set_obd_multiplexing)
|
|
|
|
mocker.patch("openpilot.selfdrive.car.isotp_parallel_query.IsoTpParallelQuery.get_data", self.fake_get_data)
|
|
|
|
for _ in range(self.N):
|
|
|
|
# Treat each brand as the most likely (aka, the first) brand with OBD multiplexing initially on
|
|
|
|
self.current_obd_multiplexing = True
|
|
|
|
|
|
|
|
t = time.perf_counter()
|
|
|
|
get_fw_versions(fake_socket, fake_socket, brand, num_pandas=num_pandas)
|
|
|
|
self.total_time += time.perf_counter() - t
|
|
|
|
|
|
|
|
return self.total_time / self.N
|
|
|
|
|
|
|
|
def _assert_timing(self, avg_time, ref_time):
|
|
|
|
assert avg_time < ref_time + self.TOL
|
|
|
|
assert avg_time > ref_time - self.TOL, "Performance seems to have improved, update test refs."
|
|
|
|
|
|
|
|
def test_startup_timing(self, subtests, mocker):
|
|
|
|
# Tests worse-case VIN query time and typical present ECU query time
|
|
|
|
vin_ref_times = {'worst': 1.4, 'best': 0.7} # best assumes we go through all queries to get a match
|
|
|
|
present_ecu_ref_time = 0.45
|
|
|
|
|
|
|
|
def fake_get_ecu_addrs(*_, timeout):
|
|
|
|
self.total_time += timeout
|
|
|
|
return set()
|
|
|
|
|
|
|
|
fake_socket = FakeSocket()
|
|
|
|
self.total_time = 0.0
|
|
|
|
mocker.patch("openpilot.selfdrive.car.fw_versions.set_obd_multiplexing", self.fake_set_obd_multiplexing)
|
|
|
|
mocker.patch("openpilot.selfdrive.car.fw_versions.get_ecu_addrs", fake_get_ecu_addrs)
|
|
|
|
for _ in range(self.N):
|
|
|
|
self.current_obd_multiplexing = True
|
|
|
|
get_present_ecus(fake_socket, fake_socket, num_pandas=2)
|
|
|
|
self._assert_timing(self.total_time / self.N, present_ecu_ref_time)
|
|
|
|
print(f'get_present_ecus, query time={self.total_time / self.N} seconds')
|
|
|
|
|
|
|
|
for name, args in (('worst', {}), ('best', {'retry': 1})):
|
|
|
|
with subtests.test(name=name):
|
|
|
|
self.total_time = 0.0
|
|
|
|
mocker.patch("openpilot.selfdrive.car.isotp_parallel_query.IsoTpParallelQuery.get_data", self.fake_get_data)
|
|
|
|
for _ in range(self.N):
|
|
|
|
get_vin(fake_socket, fake_socket, (0, 1), **args)
|
|
|
|
self._assert_timing(self.total_time / self.N, vin_ref_times[name])
|
|
|
|
print(f'get_vin {name} case, query time={self.total_time / self.N} seconds')
|
|
|
|
|
|
|
|
def test_fw_query_timing(self, subtests, mocker):
|
|
|
|
total_ref_time = {1: 7.2, 2: 7.8}
|
|
|
|
brand_ref_times = {
|
|
|
|
1: {
|
|
|
|
'gm': 1.0,
|
|
|
|
'body': 0.1,
|
|
|
|
'chrysler': 0.3,
|
Ford: log interesting module configuration data (#31569)
* Ford: log interesting module configuration data
Ford ECUs have what is called "As-Built Data" which is configured at the
factory/workshop to set what packages/features are enabled on the car.
But they also contain vehicle specific information (VIN, make, model,
weight, wheel base...), DTC information and driver preferences.
I dumped the CAN traffic for the FORScan diagnostic tool to see how it
requests this information from the ECUs.
<details>
<summary>FORScan communication with IPMA (camera)</summary>
<pre>
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': '0200'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'TESTER_PRESENT', 'hex': '00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'TESTER_PRESENT', 'hex': '00'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f190'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f113'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x13JX7T-19H406-CH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1134a5837542d3139483430362d434800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f188'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x88JX7T-14F397-AH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1884a5837542d3134463339372d414800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f120'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1 JX7T-14F397-BF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1204a5837542d3134463339372d424600000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f121'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f124'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1$JX7T-14F398-AG\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1244a5837542d3134463339382d414700000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f125'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1%JX7T-14F398-BF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1254a5837542d3134463339382d424600000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f126'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f10a'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f111'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x11JX7T-14F403-CA\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1114a5837542d3134463430332d434100000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f18c'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x8c182762191\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f18c31383237363231393100000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f162'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f110'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x10DS-JX7T-19H406-AD\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f11044532d4a5837542d3139483430362d414400000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': '0202'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd100'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd10001'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd700'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd70001010101'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd701'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd70101020000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'dd01'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'dd010102f8'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f113'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x13JX7T-19H406-CH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1134a5837542d3139483430362d434800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd08'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd0800000500500100300000000000000000000000300000000000000000200100400300100200001200f00300500000000000000300c00b00400200000000000000000000000000000000200f01201e01501400a00200200400700d02501d01700700e06405005e05503401100a000000002002002001000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd09'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd09ffec0001fef60002'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DTC_INFORMATION', 'hex': '028f'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DTC_INFORMATION', 'hex': '02ff50019768c253002cc401862cc418862c'}
... skip DTC requests ...
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de01'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de01fd5616db5fffff557fe1f842080000000800000008000000080000000819bfe00f7c00000000000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de02'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de02800000008000000080000000800000008337fc00800000008000000080000000800000008337fc0000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de03'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de03fffc26c3800000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de04'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de04546a8c0000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de05'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de06'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de07'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de08'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de09'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0a'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0b'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0c'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0d'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0e'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
</pre>
</details>
Using UDS service `READ_DATA_BY_IDENTIFIER`, we can read the As-Built
blocks from `0xDExx` with no diagnostic session/security access necessary.
I used [Online As-Built databases](https://cyanlabs.net/asbuilt-db/) and
various coding spreadsheets shared online to find values we might be
interested in using for fingerprinting (both vehicle parameters and
identifying the platform).
ABS:
- Payload tier (Base, Mid Payload Upgrade, Heavy Duty Payload
Upgrade...)
- Wheelbase
- Steering ratio
- Cruise Control Mode (Normal, Adaptive)
- Enable Stop and Go
PSCM:
- Enable Lane Keeping Aid
- Enable Traffic Jam Assist
- Enable Lane Centering Assist
IPMA (Q4):
- Steering ratio
- Wheelbase
APIM (Sync 3 and Sync 4):
- Steering ratio
- Vehicle weight
- Wheelbase
There are more potentially useful signals which I haven't included
although they might not be necessary:
- Vehicle (Ford platform code, like "C344" or "C519" - although the
source of the mapping from index to code is FORScan and not Ford
themselves unless we can find a better source).
- Fuel type
- Vehicle length/height/front track/rear track
- Tire circumference (could be useful for converting wheel speed rad/s
to m/s)
- Steering angle source (Pinion, Wheel)
- Country code (letters, e.g. US, CA or UK)
- Transmission type
- CAN network architecture
- More feature flags (the APIM also stores settings for ACC, LCA, BLIS)
The full list of settings I have found is
[here](https://github.com/incognitojam/op-notebooks/blob/main/ford/settings.py).
* FwQueryConfig: add data_requests
* add car_data to CarInterface get_params
* Revert "add car_data to CarInterface get_params"
This reverts commit aa161a6b82082705db97bea2c4317e1888a74845.
* test_ford: add APIM ecu address
* Revert "FwQueryConfig: add data_requests"
This reverts commit dc5484a9b80be5bc61a7fdf55560b8813bc43ef7.
* fix block numbers and add extra queries
* bump test_fw_query_timing
* add missing query whitelists
* simplify asbuilt requests
* use forscan block ids
* formatting
---------
Co-authored-by: Shane Smiskol <shane@smiskol.com>
1 year ago
|
|
|
'ford': 1.5,
|
|
|
|
'honda': 0.45,
|
|
|
|
'hyundai': 0.65,
|
|
|
|
'mazda': 0.1,
|
|
|
|
'nissan': 0.8,
|
|
|
|
'subaru': 0.65,
|
|
|
|
'tesla': 0.3,
|
|
|
|
'toyota': 0.7,
|
|
|
|
'volkswagen': 0.65,
|
|
|
|
},
|
|
|
|
2: {
|
Ford: log interesting module configuration data (#31569)
* Ford: log interesting module configuration data
Ford ECUs have what is called "As-Built Data" which is configured at the
factory/workshop to set what packages/features are enabled on the car.
But they also contain vehicle specific information (VIN, make, model,
weight, wheel base...), DTC information and driver preferences.
I dumped the CAN traffic for the FORScan diagnostic tool to see how it
requests this information from the ECUs.
<details>
<summary>FORScan communication with IPMA (camera)</summary>
<pre>
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': '0200'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'TESTER_PRESENT', 'hex': '00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'TESTER_PRESENT', 'hex': '00'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f190'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f113'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x13JX7T-19H406-CH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1134a5837542d3139483430362d434800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f188'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x88JX7T-14F397-AH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1884a5837542d3134463339372d414800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f120'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1 JX7T-14F397-BF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1204a5837542d3134463339372d424600000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f121'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f124'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1$JX7T-14F398-AG\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1244a5837542d3134463339382d414700000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f125'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1%JX7T-14F398-BF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1254a5837542d3134463339382d424600000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f126'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f10a'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f111'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x11JX7T-14F403-CA\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1114a5837542d3134463430332d434100000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f18c'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x8c182762191\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f18c31383237363231393100000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f162'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f110'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x10DS-JX7T-19H406-AD\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f11044532d4a5837542d3139483430362d414400000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': '0202'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd100'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd10001'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd700'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd70001010101'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd701'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'd70101020000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'dd01'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'dd010102f8'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'f113'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'data': b'\xf1\x13JX7T-19H406-CH\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'hex': 'f1134a5837542d3139483430362d434800000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd08'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd0800000500500100300000000000000000000000300000000000000000200100400300100200001200f00300500000000000000300c00b00400200000000000000000000000000000000200f01201e01501400a00200200400700d02501d01700700e06405005e05503401100a000000002002002001000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd09'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'fd09ffec0001fef60002'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DTC_INFORMATION', 'hex': '028f'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DTC_INFORMATION', 'hex': '02ff50019768c253002cc401862cc418862c'}
... skip DTC requests ...
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de00020799dbaa10296516a440000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de01'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de01fd5616db5fffff557fe1f842080000000800000008000000080000000819bfe00f7c00000000000000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de02'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de02800000008000000080000000800000008337fc00800000008000000080000000800000008337fc0000000000000000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de03'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de03fffc26c3800000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de04'}
{'addr': 1806, 'type': 'positive_response', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de04546a8c0000000000'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de05'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de06'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de07'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de08'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de09'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0a'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0b'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0c'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0d'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
{'addr': 1798, 'type': 'request', 'service': 'READ_DATA_BY_IDENTIFIER', 'hex': 'de0e'}
{'addr': 1806, 'type': 'negative_response', 'hex': '2231'}
</pre>
</details>
Using UDS service `READ_DATA_BY_IDENTIFIER`, we can read the As-Built
blocks from `0xDExx` with no diagnostic session/security access necessary.
I used [Online As-Built databases](https://cyanlabs.net/asbuilt-db/) and
various coding spreadsheets shared online to find values we might be
interested in using for fingerprinting (both vehicle parameters and
identifying the platform).
ABS:
- Payload tier (Base, Mid Payload Upgrade, Heavy Duty Payload
Upgrade...)
- Wheelbase
- Steering ratio
- Cruise Control Mode (Normal, Adaptive)
- Enable Stop and Go
PSCM:
- Enable Lane Keeping Aid
- Enable Traffic Jam Assist
- Enable Lane Centering Assist
IPMA (Q4):
- Steering ratio
- Wheelbase
APIM (Sync 3 and Sync 4):
- Steering ratio
- Vehicle weight
- Wheelbase
There are more potentially useful signals which I haven't included
although they might not be necessary:
- Vehicle (Ford platform code, like "C344" or "C519" - although the
source of the mapping from index to code is FORScan and not Ford
themselves unless we can find a better source).
- Fuel type
- Vehicle length/height/front track/rear track
- Tire circumference (could be useful for converting wheel speed rad/s
to m/s)
- Steering angle source (Pinion, Wheel)
- Country code (letters, e.g. US, CA or UK)
- Transmission type
- CAN network architecture
- More feature flags (the APIM also stores settings for ACC, LCA, BLIS)
The full list of settings I have found is
[here](https://github.com/incognitojam/op-notebooks/blob/main/ford/settings.py).
* FwQueryConfig: add data_requests
* add car_data to CarInterface get_params
* Revert "add car_data to CarInterface get_params"
This reverts commit aa161a6b82082705db97bea2c4317e1888a74845.
* test_ford: add APIM ecu address
* Revert "FwQueryConfig: add data_requests"
This reverts commit dc5484a9b80be5bc61a7fdf55560b8813bc43ef7.
* fix block numbers and add extra queries
* bump test_fw_query_timing
* add missing query whitelists
* simplify asbuilt requests
* use forscan block ids
* formatting
---------
Co-authored-by: Shane Smiskol <shane@smiskol.com>
1 year ago
|
|
|
'ford': 1.6,
|
|
|
|
'hyundai': 1.15,
|
|
|
|
'tesla': 0.3,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
total_times = {1: 0.0, 2: 0.0}
|
|
|
|
for num_pandas in (1, 2):
|
|
|
|
for brand, config in FW_QUERY_CONFIGS.items():
|
|
|
|
with subtests.test(brand=brand, num_pandas=num_pandas):
|
|
|
|
avg_time = self._benchmark_brand(brand, num_pandas, mocker)
|
|
|
|
total_times[num_pandas] += avg_time
|
|
|
|
avg_time = round(avg_time, 2)
|
|
|
|
|
|
|
|
ref_time = brand_ref_times[num_pandas].get(brand)
|
|
|
|
if ref_time is None:
|
|
|
|
# ref time should be same as 1 panda if no aux queries
|
|
|
|
ref_time = brand_ref_times[num_pandas - 1][brand]
|
|
|
|
|
|
|
|
self._assert_timing(avg_time, ref_time)
|
|
|
|
print(f'{brand=}, {num_pandas=}, {len(config.requests)=}, avg FW query time={avg_time} seconds')
|
|
|
|
|
|
|
|
for num_pandas in (1, 2):
|
|
|
|
with subtests.test(brand='all_brands', num_pandas=num_pandas):
|
|
|
|
total_time = round(total_times[num_pandas], 2)
|
|
|
|
self._assert_timing(total_time, total_ref_time[num_pandas])
|
|
|
|
print(f'all brands, total FW query time={total_time} seconds')
|