You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					1795 lines
				
				51 KiB
			
		
		
			
		
	
	
					1795 lines
				
				51 KiB
			| 
											6 years ago
										 | /*
 | ||
|  |   fastcluster: Fast hierarchical clustering routines for R and Python
 | ||
|  | 
 | ||
|  |   Copyright © 2011 Daniel Müllner
 | ||
|  |   <http://danifold.net>
 | ||
|  | 
 | ||
|  |   This library implements various fast algorithms for hierarchical,
 | ||
|  |   agglomerative clustering methods:
 | ||
|  | 
 | ||
|  |   (1) Algorithms for the "stored matrix approach": the input is the array of
 | ||
|  |       pairwise dissimilarities.
 | ||
|  | 
 | ||
|  |       MST_linkage_core: single linkage clustering with the "minimum spanning
 | ||
|  |       tree algorithm (Rohlfs)
 | ||
|  | 
 | ||
|  |       NN_chain_core: nearest-neighbor-chain algorithm, suitable for single,
 | ||
|  |       complete, average, weighted and Ward linkage (Murtagh)
 | ||
|  | 
 | ||
|  |       generic_linkage: generic algorithm, suitable for all distance update
 | ||
|  |       formulas (Müllner)
 | ||
|  | 
 | ||
|  |   (2) Algorithms for the "stored data approach": the input are points in a
 | ||
|  |       vector space.
 | ||
|  | 
 | ||
|  |       MST_linkage_core_vector: single linkage clustering for vector data
 | ||
|  | 
 | ||
|  |       generic_linkage_vector: generic algorithm for vector data, suitable for
 | ||
|  |       the Ward, centroid and median methods.
 | ||
|  | 
 | ||
|  |       generic_linkage_vector_alternative: alternative scheme for updating the
 | ||
|  |       nearest neighbors. This method seems faster than "generic_linkage_vector"
 | ||
|  |       for the centroid and median methods but slower for the Ward method.
 | ||
|  | 
 | ||
|  |   All these implementation treat infinity values correctly. They throw an
 | ||
|  |   exception if a NaN distance value occurs.
 | ||
|  | */
 | ||
|  | 
 | ||
|  | // Older versions of Microsoft Visual Studio do not have the fenv header.
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #if (_MSC_VER == 1500 || _MSC_VER == 1600)
 | ||
|  | #define NO_INCLUDE_FENV
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | // NaN detection via fenv might not work on systems with software
 | ||
|  | // floating-point emulation (bug report for Debian armel).
 | ||
|  | #ifdef __SOFTFP__
 | ||
|  | #define NO_INCLUDE_FENV
 | ||
|  | #endif
 | ||
|  | #ifdef NO_INCLUDE_FENV
 | ||
|  | #pragma message("Do not use fenv header.")
 | ||
|  | #else
 | ||
| 
											5 years ago
										 | //#pragma message("Use fenv header. If there is a warning about unknown #pragma STDC FENV_ACCESS, this can be ignored.")
 | ||
|  | //#pragma STDC FENV_ACCESS on
 | ||
| 
											6 years ago
										 | #include <fenv.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <cmath> // for std::pow, std::sqrt
 | ||
|  | #include <cstddef> // for std::ptrdiff_t
 | ||
|  | #include <limits> // for std::numeric_limits<...>::infinity()
 | ||
|  | #include <algorithm> // for std::fill_n
 | ||
|  | #include <stdexcept> // for std::runtime_error
 | ||
|  | #include <string> // for std::string
 | ||
|  | 
 | ||
|  | #include <cfloat> // also for DBL_MAX, DBL_MIN
 | ||
|  | #ifndef DBL_MANT_DIG
 | ||
|  | #error The constant DBL_MANT_DIG could not be defined.
 | ||
|  | #endif
 | ||
|  | #define T_FLOAT_MANT_DIG DBL_MANT_DIG
 | ||
|  | 
 | ||
|  | #ifndef LONG_MAX
 | ||
|  | #include <climits>
 | ||
|  | #endif
 | ||
|  | #ifndef LONG_MAX
 | ||
|  | #error The constant LONG_MAX could not be defined.
 | ||
|  | #endif
 | ||
|  | #ifndef INT_MAX
 | ||
|  | #error The constant INT_MAX could not be defined.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef INT32_MAX
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #if _MSC_VER >= 1600
 | ||
|  | #define __STDC_LIMIT_MACROS
 | ||
|  | #include <stdint.h>
 | ||
|  | #else
 | ||
|  | typedef __int32 int_fast32_t;
 | ||
|  | typedef __int64 int64_t;
 | ||
|  | #endif
 | ||
|  | #else
 | ||
|  | #define __STDC_LIMIT_MACROS
 | ||
|  | #include <stdint.h>
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define FILL_N std::fill_n
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #if _MSC_VER < 1600
 | ||
|  | #undef FILL_N
 | ||
|  | #define FILL_N stdext::unchecked_fill_n
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Suppress warnings about (potentially) uninitialized variables.
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | 	#pragma warning (disable:4700)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef HAVE_DIAGNOSTIC
 | ||
|  | #if __GNUC__ > 4 || (__GNUC__ == 4 && (__GNUC_MINOR__ >= 6))
 | ||
|  | #define HAVE_DIAGNOSTIC 1
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef HAVE_VISIBILITY
 | ||
|  | #if __GNUC__ >= 4
 | ||
|  | #define HAVE_VISIBILITY 1
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Since the public interface is given by the Python respectively R interface,
 | ||
|  |  * we do not want other symbols than the interface initalization routines to be
 | ||
|  |  * visible in the shared object file. The "visibility" switch is a GCC concept.
 | ||
|  |  * Hiding symbols keeps the relocation table small and decreases startup time.
 | ||
|  |  * See http://gcc.gnu.org/wiki/Visibility
 | ||
|  |  */
 | ||
|  | #if HAVE_VISIBILITY
 | ||
|  | #pragma GCC visibility push(hidden)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | typedef int_fast32_t t_index;
 | ||
|  | #ifndef INT32_MAX
 | ||
|  | #define MAX_INDEX 0x7fffffffL
 | ||
|  | #else
 | ||
|  | #define MAX_INDEX INT32_MAX
 | ||
|  | #endif
 | ||
|  | #if (LONG_MAX < MAX_INDEX)
 | ||
|  | #error The integer format "t_index" must not have a greater range than "long int".
 | ||
|  | #endif
 | ||
|  | #if (INT_MAX > MAX_INDEX)
 | ||
|  | #error The integer format "int" must not have a greater range than "t_index".
 | ||
|  | #endif
 | ||
|  | typedef double t_float;
 | ||
|  | 
 | ||
|  | /* Method codes.
 | ||
|  | 
 | ||
|  |    These codes must agree with the METHODS array in fastcluster.R and the
 | ||
|  |    dictionary mthidx in fastcluster.py.
 | ||
|  | */
 | ||
|  | enum method_codes {
 | ||
|  |   // non-Euclidean methods
 | ||
|  |   METHOD_METR_SINGLE           = 0,
 | ||
|  |   METHOD_METR_COMPLETE         = 1,
 | ||
|  |   METHOD_METR_AVERAGE          = 2,
 | ||
|  |   METHOD_METR_WEIGHTED         = 3,
 | ||
|  |   METHOD_METR_WARD             = 4,
 | ||
|  |   METHOD_METR_WARD_D           = METHOD_METR_WARD,
 | ||
|  |   METHOD_METR_CENTROID         = 5,
 | ||
|  |   METHOD_METR_MEDIAN           = 6,
 | ||
|  |   METHOD_METR_WARD_D2          = 7,
 | ||
|  | 
 | ||
|  |   MIN_METHOD_CODE              = 0,
 | ||
|  |   MAX_METHOD_CODE              = 7
 | ||
|  | };
 | ||
|  | 
 | ||
|  | enum method_codes_vector {
 | ||
|  |   // Euclidean methods
 | ||
|  |   METHOD_VECTOR_SINGLE         = 0,
 | ||
|  |   METHOD_VECTOR_WARD           = 1,
 | ||
|  |   METHOD_VECTOR_CENTROID       = 2,
 | ||
|  |   METHOD_VECTOR_MEDIAN         = 3,
 | ||
|  | 
 | ||
|  |   MIN_METHOD_VECTOR_CODE       = 0,
 | ||
|  |   MAX_METHOD_VECTOR_CODE       = 3
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // self-destructing array pointer
 | ||
|  | template <typename type>
 | ||
|  | class auto_array_ptr{
 | ||
|  | private:
 | ||
|  |   type * ptr;
 | ||
|  |   auto_array_ptr(auto_array_ptr const &); // non construction-copyable
 | ||
|  |   auto_array_ptr& operator=(auto_array_ptr const &); // non copyable
 | ||
|  | public:
 | ||
|  |   auto_array_ptr()
 | ||
|  |     : ptr(NULL)
 | ||
|  |   { }
 | ||
|  |   template <typename index>
 | ||
|  |   auto_array_ptr(index const size)
 | ||
|  |     : ptr(new type[size])
 | ||
|  |   { }
 | ||
|  |   template <typename index, typename value>
 | ||
|  |   auto_array_ptr(index const size, value const val)
 | ||
|  |     : ptr(new type[size])
 | ||
|  |   {
 | ||
|  |     FILL_N(ptr, size, val);
 | ||
|  |   }
 | ||
|  |   ~auto_array_ptr() {
 | ||
|  |     delete [] ptr; }
 | ||
|  |   void free() {
 | ||
|  |     delete [] ptr;
 | ||
|  |     ptr = NULL;
 | ||
|  |   }
 | ||
|  |   template <typename index>
 | ||
|  |   void init(index const size) {
 | ||
|  |     ptr = new type [size];
 | ||
|  |   }
 | ||
|  |   template <typename index, typename value>
 | ||
|  |   void init(index const size, value const val) {
 | ||
|  |     init(size);
 | ||
|  |     FILL_N(ptr, size, val);
 | ||
|  |   }
 | ||
|  |   inline operator type *() const { return ptr; }
 | ||
|  | };
 | ||
|  | 
 | ||
|  | struct node {
 | ||
|  |   t_index node1, node2;
 | ||
|  |   t_float dist;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | inline bool operator< (const node a, const node b) {
 | ||
|  |   return (a.dist < b.dist);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | class cluster_result {
 | ||
|  | private:
 | ||
|  |   auto_array_ptr<node> Z;
 | ||
|  |   t_index pos;
 | ||
|  | 
 | ||
|  | public:
 | ||
|  |   cluster_result(const t_index size)
 | ||
|  |     : Z(size)
 | ||
|  |     , pos(0)
 | ||
|  |   {}
 | ||
|  | 
 | ||
|  |   void append(const t_index node1, const t_index node2, const t_float dist) {
 | ||
|  |     Z[pos].node1 = node1;
 | ||
|  |     Z[pos].node2 = node2;
 | ||
|  |     Z[pos].dist  = dist;
 | ||
|  |     ++pos;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   node * operator[] (const t_index idx) const { return Z + idx; }
 | ||
|  | 
 | ||
|  |   /* Define several methods to postprocess the distances. All these functions
 | ||
|  |      are monotone, so they do not change the sorted order of distances. */
 | ||
|  | 
 | ||
|  |   void sqrt() const {
 | ||
|  |     for (node * ZZ=Z; ZZ!=Z+pos; ++ZZ) {
 | ||
|  |       ZZ->dist = std::sqrt(ZZ->dist);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void sqrt(const t_float) const { // ignore the argument
 | ||
|  |     sqrt();
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void sqrtdouble(const t_float) const { // ignore the argument
 | ||
|  |     for (node * ZZ=Z; ZZ!=Z+pos; ++ZZ) {
 | ||
|  |       ZZ->dist = std::sqrt(2*ZZ->dist);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   #ifdef R_pow
 | ||
|  |   #define my_pow R_pow
 | ||
|  |   #else
 | ||
|  |   #define my_pow std::pow
 | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |   void power(const t_float p) const {
 | ||
|  |     t_float const q = 1/p;
 | ||
|  |     for (node * ZZ=Z; ZZ!=Z+pos; ++ZZ) {
 | ||
|  |       ZZ->dist = my_pow(ZZ->dist,q);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void plusone(const t_float) const { // ignore the argument
 | ||
|  |     for (node * ZZ=Z; ZZ!=Z+pos; ++ZZ) {
 | ||
|  |       ZZ->dist += 1;
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void divide(const t_float denom) const {
 | ||
|  |     for (node * ZZ=Z; ZZ!=Z+pos; ++ZZ) {
 | ||
|  |       ZZ->dist /= denom;
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class doubly_linked_list {
 | ||
|  |   /*
 | ||
|  |     Class for a doubly linked list. Initially, the list is the integer range
 | ||
|  |     [0, size]. We provide a forward iterator and a method to delete an index
 | ||
|  |     from the list.
 | ||
|  | 
 | ||
|  |     Typical use: for (i=L.start; L<size; i=L.succ[I])
 | ||
|  |     or
 | ||
|  |     for (i=somevalue; L<size; i=L.succ[I])
 | ||
|  |   */
 | ||
|  | public:
 | ||
|  |   t_index start;
 | ||
|  |   auto_array_ptr<t_index> succ;
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   auto_array_ptr<t_index> pred;
 | ||
|  |   // Not necessarily private, we just do not need it in this instance.
 | ||
|  | 
 | ||
|  | public:
 | ||
|  |   doubly_linked_list(const t_index size)
 | ||
|  |     // Initialize to the given size.
 | ||
|  |     : start(0)
 | ||
|  |     , succ(size+1)
 | ||
|  |     , pred(size+1)
 | ||
|  |   {
 | ||
|  |     for (t_index i=0; i<size; ++i) {
 | ||
|  |       pred[i+1] = i;
 | ||
|  |       succ[i] = i+1;
 | ||
|  |     }
 | ||
|  |     // pred[0] is never accessed!
 | ||
|  |     //succ[size] is never accessed!
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   ~doubly_linked_list() {}
 | ||
|  | 
 | ||
|  |   void remove(const t_index idx) {
 | ||
|  |     // Remove an index from the list.
 | ||
|  |     if (idx==start) {
 | ||
|  |       start = succ[idx];
 | ||
|  |     }
 | ||
|  |     else {
 | ||
|  |       succ[pred[idx]] = succ[idx];
 | ||
|  |       pred[succ[idx]] = pred[idx];
 | ||
|  |     }
 | ||
|  |     succ[idx] = 0; // Mark as inactive
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   bool is_inactive(t_index idx) const {
 | ||
|  |     return (succ[idx]==0);
 | ||
|  |   }
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // Indexing functions
 | ||
|  | // D is the upper triangular part of a symmetric (NxN)-matrix
 | ||
|  | // We require r_ < c_ !
 | ||
|  | #define D_(r_,c_) ( D[(static_cast<std::ptrdiff_t>(2*N-3-(r_))*(r_)>>1)+(c_)-1] )
 | ||
|  | // Z is an ((N-1)x4)-array
 | ||
|  | #define Z_(_r, _c) (Z[(_r)*4 + (_c)])
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Lookup function for a union-find data structure.
 | ||
|  | 
 | ||
|  |   The function finds the root of idx by going iteratively through all
 | ||
|  |   parent elements until a root is found. An element i is a root if
 | ||
|  |   nodes[i] is zero. To make subsequent searches faster, the entry for
 | ||
|  |   idx and all its parents is updated with the root element.
 | ||
|  |  */
 | ||
|  | class union_find {
 | ||
|  | private:
 | ||
|  |   auto_array_ptr<t_index> parent;
 | ||
|  |   t_index nextparent;
 | ||
|  | 
 | ||
|  | public:
 | ||
|  |   union_find(const t_index size)
 | ||
|  |     : parent(size>0 ? 2*size-1 : 0, 0)
 | ||
|  |     , nextparent(size)
 | ||
|  |   { }
 | ||
|  | 
 | ||
|  |   t_index Find (t_index idx) const {
 | ||
|  |     if (parent[idx] != 0 ) { // a → b
 | ||
|  |       t_index p = idx;
 | ||
|  |       idx = parent[idx];
 | ||
|  |       if (parent[idx] != 0 ) { // a → b → c
 | ||
|  |         do {
 | ||
|  |           idx = parent[idx];
 | ||
|  |         } while (parent[idx] != 0);
 | ||
|  |         do {
 | ||
|  |           t_index tmp = parent[p];
 | ||
|  |           parent[p] = idx;
 | ||
|  |           p = tmp;
 | ||
|  |         } while (parent[p] != idx);
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     return idx;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void Union (const t_index node1, const t_index node2) {
 | ||
|  |     parent[node1] = parent[node2] = nextparent++;
 | ||
|  |   }
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class nan_error{};
 | ||
|  | #ifdef FE_INVALID
 | ||
|  | class fenv_error{};
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static void MST_linkage_core(const t_index N, const t_float * const D,
 | ||
|  |                              cluster_result & Z2) {
 | ||
|  | /*
 | ||
|  |     N: integer, number of data points
 | ||
|  |     D: condensed distance matrix N*(N-1)/2
 | ||
|  |     Z2: output data structure
 | ||
|  | 
 | ||
|  |     The basis of this algorithm is an algorithm by Rohlf:
 | ||
|  | 
 | ||
|  |     F. James Rohlf, Hierarchical clustering using the minimum spanning tree,
 | ||
|  |     The Computer Journal, vol. 16, 1973, p. 93–95.
 | ||
|  | */
 | ||
|  |   t_index i;
 | ||
|  |   t_index idx2;
 | ||
|  |   doubly_linked_list active_nodes(N);
 | ||
|  |   auto_array_ptr<t_float> d(N);
 | ||
|  | 
 | ||
|  |   t_index prev_node;
 | ||
|  |   t_float min;
 | ||
|  | 
 | ||
|  |   // first iteration
 | ||
|  |   idx2 = 1;
 | ||
|  |   min = std::numeric_limits<t_float>::infinity();
 | ||
|  |   for (i=1; i<N; ++i) {
 | ||
|  |     d[i] = D[i-1];
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |     if (d[i] < min) {
 | ||
|  |       min = d[i];
 | ||
|  |       idx2 = i;
 | ||
|  |     }
 | ||
|  |     else if (fc_isnan(d[i]))
 | ||
|  |       throw (nan_error());
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   }
 | ||
|  |   Z2.append(0, idx2, min);
 | ||
|  | 
 | ||
|  |   for (t_index j=1; j<N-1; ++j) {
 | ||
|  |     prev_node = idx2;
 | ||
|  |     active_nodes.remove(prev_node);
 | ||
|  | 
 | ||
|  |     idx2 = active_nodes.succ[0];
 | ||
|  |     min = d[idx2];
 | ||
|  |     for (i=idx2; i<prev_node; i=active_nodes.succ[i]) {
 | ||
|  |       t_float tmp = D_(i, prev_node);
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |       if (tmp < d[i])
 | ||
|  |         d[i] = tmp;
 | ||
|  |       else if (fc_isnan(tmp))
 | ||
|  |         throw (nan_error());
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |       if (d[i] < min) {
 | ||
|  |         min = d[i];
 | ||
|  |         idx2 = i;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     for (; i<N; i=active_nodes.succ[i]) {
 | ||
|  |       t_float tmp = D_(prev_node, i);
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |       if (d[i] > tmp)
 | ||
|  |         d[i] = tmp;
 | ||
|  |       else if (fc_isnan(tmp))
 | ||
|  |         throw (nan_error());
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |       if (d[i] < min) {
 | ||
|  |         min = d[i];
 | ||
|  |         idx2 = i;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     Z2.append(prev_node, idx2, min);
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | /* Functions for the update of the dissimilarity array */
 | ||
|  | 
 | ||
|  | inline static void f_single( t_float * const b, const t_float a ) {
 | ||
|  |   if (*b > a) *b = a;
 | ||
|  | }
 | ||
|  | inline static void f_complete( t_float * const b, const t_float a ) {
 | ||
|  |   if (*b < a) *b = a;
 | ||
|  | }
 | ||
|  | inline static void f_average( t_float * const b, const t_float a, const t_float s, const t_float t) {
 | ||
|  |   *b = s*a + t*(*b);
 | ||
|  |   #ifndef FE_INVALID
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |   if (fc_isnan(*b)) {
 | ||
|  |     throw(nan_error());
 | ||
|  |   }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | inline static void f_weighted( t_float * const b, const t_float a) {
 | ||
|  |   *b = (a+*b)*.5;
 | ||
|  |   #ifndef FE_INVALID
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |   if (fc_isnan(*b)) {
 | ||
|  |     throw(nan_error());
 | ||
|  |   }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | inline static void f_ward( t_float * const b, const t_float a, const t_float c, const t_float s, const t_float t, const t_float v) {
 | ||
|  |   *b = ( (v+s)*a - v*c + (v+t)*(*b) ) / (s+t+v);
 | ||
|  |   //*b = a+(*b)-(t*a+s*(*b)+v*c)/(s+t+v);
 | ||
|  |   #ifndef FE_INVALID
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |   if (fc_isnan(*b)) {
 | ||
|  |     throw(nan_error());
 | ||
|  |   }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | inline static void f_centroid( t_float * const b, const t_float a, const t_float stc, const t_float s, const t_float t) {
 | ||
|  |   *b = s*a - stc + t*(*b);
 | ||
|  |   #ifndef FE_INVALID
 | ||
|  |   if (fc_isnan(*b)) {
 | ||
|  |     throw(nan_error());
 | ||
|  |   }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | inline static void f_median( t_float * const b, const t_float a, const t_float c_4) {
 | ||
|  |   *b = (a+(*b))*.5 - c_4;
 | ||
|  |   #ifndef FE_INVALID
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |   if (fc_isnan(*b)) {
 | ||
|  |     throw(nan_error());
 | ||
|  |   }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <method_codes method, typename t_members>
 | ||
|  | static void NN_chain_core(const t_index N, t_float * const D, t_members * const members, cluster_result & Z2) {
 | ||
|  | /*
 | ||
|  |     N: integer
 | ||
|  |     D: condensed distance matrix N*(N-1)/2
 | ||
|  |     Z2: output data structure
 | ||
|  | 
 | ||
|  |     This is the NN-chain algorithm, described on page 86 in the following book:
 | ||
|  | 
 | ||
|  |     Fionn Murtagh, Multidimensional Clustering Algorithms,
 | ||
|  |     Vienna, Würzburg: Physica-Verlag, 1985.
 | ||
|  | */
 | ||
|  |   t_index i;
 | ||
|  | 
 | ||
|  |   auto_array_ptr<t_index> NN_chain(N);
 | ||
|  |   t_index NN_chain_tip = 0;
 | ||
|  | 
 | ||
|  |   t_index idx1, idx2;
 | ||
|  | 
 | ||
|  |   t_float size1, size2;
 | ||
|  |   doubly_linked_list active_nodes(N);
 | ||
|  | 
 | ||
|  |   t_float min;
 | ||
|  | 
 | ||
|  |   for (t_float const * DD=D; DD!=D+(static_cast<std::ptrdiff_t>(N)*(N-1)>>1);
 | ||
|  |        ++DD) {
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |     if (fc_isnan(*DD)) {
 | ||
|  |       throw(nan_error());
 | ||
|  |     }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   #ifdef FE_INVALID
 | ||
|  |   if (feclearexcept(FE_INVALID)) throw fenv_error();
 | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |   for (t_index j=0; j<N-1; ++j) {
 | ||
|  |     if (NN_chain_tip <= 3) {
 | ||
|  |       NN_chain[0] = idx1 = active_nodes.start;
 | ||
|  |       NN_chain_tip = 1;
 | ||
|  | 
 | ||
|  |       idx2 = active_nodes.succ[idx1];
 | ||
|  |       min = D_(idx1,idx2);
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i]) {
 | ||
|  |         if (D_(idx1,i) < min) {
 | ||
|  |           min = D_(idx1,i);
 | ||
|  |           idx2 = i;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |     }  // a: idx1   b: idx2
 | ||
|  |     else {
 | ||
|  |       NN_chain_tip -= 3;
 | ||
|  |       idx1 = NN_chain[NN_chain_tip-1];
 | ||
|  |       idx2 = NN_chain[NN_chain_tip];
 | ||
|  |       min = idx1<idx2 ? D_(idx1,idx2) : D_(idx2,idx1);
 | ||
|  |     }  // a: idx1   b: idx2
 | ||
|  | 
 | ||
|  |     do {
 | ||
|  |       NN_chain[NN_chain_tip] = idx2;
 | ||
|  | 
 | ||
|  |       for (i=active_nodes.start; i<idx2; i=active_nodes.succ[i]) {
 | ||
|  |         if (D_(i,idx2) < min) {
 | ||
|  |           min = D_(i,idx2);
 | ||
|  |           idx1 = i;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i]) {
 | ||
|  |         if (D_(idx2,i) < min) {
 | ||
|  |           min = D_(idx2,i);
 | ||
|  |           idx1 = i;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  | 
 | ||
|  |       idx2 = idx1;
 | ||
|  |       idx1 = NN_chain[NN_chain_tip++];
 | ||
|  | 
 | ||
|  |     } while (idx2 != NN_chain[NN_chain_tip-2]);
 | ||
|  | 
 | ||
|  |     Z2.append(idx1, idx2, min);
 | ||
|  | 
 | ||
|  |     if (idx1>idx2) {
 | ||
|  |       t_index tmp = idx1;
 | ||
|  |       idx1 = idx2;
 | ||
|  |       idx2 = tmp;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     if (method==METHOD_METR_AVERAGE ||
 | ||
|  |         method==METHOD_METR_WARD) {
 | ||
|  |       size1 = static_cast<t_float>(members[idx1]);
 | ||
|  |       size2 = static_cast<t_float>(members[idx2]);
 | ||
|  |       members[idx2] += members[idx1];
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     // Remove the smaller index from the valid indices (active_nodes).
 | ||
|  |     active_nodes.remove(idx1);
 | ||
|  | 
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_METR_SINGLE:
 | ||
|  |       /*
 | ||
|  |       Single linkage.
 | ||
|  | 
 | ||
|  |       Characteristic: new distances are never longer than the old distances.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (i=active_nodes.start; i<idx1; i=active_nodes.succ[i])
 | ||
|  |         f_single(&D_(i, idx2), D_(i, idx1) );
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; i<idx2; i=active_nodes.succ[i])
 | ||
|  |         f_single(&D_(i, idx2), D_(idx1, i) );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i])
 | ||
|  |         f_single(&D_(idx2, i), D_(idx1, i) );
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_COMPLETE:
 | ||
|  |       /*
 | ||
|  |       Complete linkage.
 | ||
|  | 
 | ||
|  |       Characteristic: new distances are never shorter than the old distances.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (i=active_nodes.start; i<idx1; i=active_nodes.succ[i])
 | ||
|  |         f_complete(&D_(i, idx2), D_(i, idx1) );
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; i<idx2; i=active_nodes.succ[i])
 | ||
|  |         f_complete(&D_(i, idx2), D_(idx1, i) );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i])
 | ||
|  |         f_complete(&D_(idx2, i), D_(idx1, i) );
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_AVERAGE: {
 | ||
|  |       /*
 | ||
|  |       Average linkage.
 | ||
|  | 
 | ||
|  |       Shorter and longer distances can occur.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       t_float s = size1/(size1+size2);
 | ||
|  |       t_float t = size2/(size1+size2);
 | ||
|  |       for (i=active_nodes.start; i<idx1; i=active_nodes.succ[i])
 | ||
|  |         f_average(&D_(i, idx2), D_(i, idx1), s, t );
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; i<idx2; i=active_nodes.succ[i])
 | ||
|  |         f_average(&D_(i, idx2), D_(idx1, i), s, t );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i])
 | ||
|  |         f_average(&D_(idx2, i), D_(idx1, i), s, t );
 | ||
|  |       break;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     case METHOD_METR_WEIGHTED:
 | ||
|  |       /*
 | ||
|  |       Weighted linkage.
 | ||
|  | 
 | ||
|  |       Shorter and longer distances can occur.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (i=active_nodes.start; i<idx1; i=active_nodes.succ[i])
 | ||
|  |         f_weighted(&D_(i, idx2), D_(i, idx1) );
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; i<idx2; i=active_nodes.succ[i])
 | ||
|  |         f_weighted(&D_(i, idx2), D_(idx1, i) );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i])
 | ||
|  |         f_weighted(&D_(idx2, i), D_(idx1, i) );
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_WARD:
 | ||
|  |       /*
 | ||
|  |       Ward linkage.
 | ||
|  | 
 | ||
|  |       Shorter and longer distances can occur, not smaller than min(d1,d2)
 | ||
|  |       but maybe bigger than max(d1,d2).
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       //t_float v = static_cast<t_float>(members[i]);
 | ||
|  |       for (i=active_nodes.start; i<idx1; i=active_nodes.succ[i])
 | ||
|  |         f_ward(&D_(i, idx2), D_(i, idx1), min,
 | ||
|  |                size1, size2, static_cast<t_float>(members[i]) );
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; i<idx2; i=active_nodes.succ[i])
 | ||
|  |         f_ward(&D_(i, idx2), D_(idx1, i), min,
 | ||
|  |                size1, size2, static_cast<t_float>(members[i]) );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (i=active_nodes.succ[idx2]; i<N; i=active_nodes.succ[i])
 | ||
|  |         f_ward(&D_(idx2, i), D_(idx1, i), min,
 | ||
|  |                size1, size2, static_cast<t_float>(members[i]) );
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     default:
 | ||
|  |       throw std::runtime_error(std::string("Invalid method."));
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  |   #ifdef FE_INVALID
 | ||
|  |   if (fetestexcept(FE_INVALID)) throw fenv_error();
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | 
 | ||
|  | class binary_min_heap {
 | ||
|  |   /*
 | ||
|  |   Class for a binary min-heap. The data resides in an array A. The elements of
 | ||
|  |   A are not changed but two lists I and R of indices are generated which point
 | ||
|  |   to elements of A and backwards.
 | ||
|  | 
 | ||
|  |   The heap tree structure is
 | ||
|  | 
 | ||
|  |      H[2*i+1]     H[2*i+2]
 | ||
|  |          \            /
 | ||
|  |           \          /
 | ||
|  |            ≤        ≤
 | ||
|  |             \      /
 | ||
|  |              \    /
 | ||
|  |               H[i]
 | ||
|  | 
 | ||
|  |   where the children must be less or equal than their parent. Thus, H[0]
 | ||
|  |   contains the minimum. The lists I and R are made such that H[i] = A[I[i]]
 | ||
|  |   and R[I[i]] = i.
 | ||
|  | 
 | ||
|  |   This implementation is not designed to handle NaN values.
 | ||
|  |   */
 | ||
|  | private:
 | ||
|  |   t_float * const A;
 | ||
|  |   t_index size;
 | ||
|  |   auto_array_ptr<t_index> I;
 | ||
|  |   auto_array_ptr<t_index> R;
 | ||
|  | 
 | ||
|  |   // no default constructor
 | ||
|  |   binary_min_heap();
 | ||
|  |   // noncopyable
 | ||
|  |   binary_min_heap(binary_min_heap const &);
 | ||
|  |   binary_min_heap & operator=(binary_min_heap const &);
 | ||
|  | 
 | ||
|  | public:
 | ||
|  |   binary_min_heap(t_float * const A_, const t_index size_)
 | ||
|  |     : A(A_), size(size_), I(size), R(size)
 | ||
|  |   { // Allocate memory and initialize the lists I and R to the identity. This
 | ||
|  |     // does not make it a heap. Call heapify afterwards!
 | ||
|  |     for (t_index i=0; i<size; ++i)
 | ||
|  |       R[i] = I[i] = i;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   binary_min_heap(t_float * const A_, const t_index size1, const t_index size2,
 | ||
|  |                   const t_index start)
 | ||
|  |     : A(A_), size(size1), I(size1), R(size2)
 | ||
|  |   { // Allocate memory and initialize the lists I and R to the identity. This
 | ||
|  |     // does not make it a heap. Call heapify afterwards!
 | ||
|  |     for (t_index i=0; i<size; ++i) {
 | ||
|  |       R[i+start] = i;
 | ||
|  |       I[i] = i + start;
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   ~binary_min_heap() {}
 | ||
|  | 
 | ||
|  |   void heapify() {
 | ||
|  |     // Arrange the indices I and R so that H[i] := A[I[i]] satisfies the heap
 | ||
|  |     // condition H[i] < H[2*i+1] and H[i] < H[2*i+2] for each i.
 | ||
|  |     //
 | ||
|  |     // Complexity: Θ(size)
 | ||
|  |     // Reference: Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms,
 | ||
|  |     // 3rd ed., 2009, Section 6.3 “Building a heap”
 | ||
|  |     t_index idx;
 | ||
|  |     for (idx=(size>>1); idx>0; ) {
 | ||
|  |       --idx;
 | ||
|  |       update_geq_(idx);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   inline t_index argmin() const {
 | ||
|  |     // Return the minimal element.
 | ||
|  |     return I[0];
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void heap_pop() {
 | ||
|  |     // Remove the minimal element from the heap.
 | ||
|  |     --size;
 | ||
|  |     I[0] = I[size];
 | ||
|  |     R[I[0]] = 0;
 | ||
|  |     update_geq_(0);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void remove(t_index idx) {
 | ||
|  |     // Remove an element from the heap.
 | ||
|  |     --size;
 | ||
|  |     R[I[size]] = R[idx];
 | ||
|  |     I[R[idx]] = I[size];
 | ||
|  |     if ( H(size)<=A[idx] ) {
 | ||
|  |       update_leq_(R[idx]);
 | ||
|  |     }
 | ||
|  |     else {
 | ||
|  |       update_geq_(R[idx]);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void replace ( const t_index idxold, const t_index idxnew,
 | ||
|  |                  const t_float val) {
 | ||
|  |     R[idxnew] = R[idxold];
 | ||
|  |     I[R[idxnew]] = idxnew;
 | ||
|  |     if (val<=A[idxold])
 | ||
|  |       update_leq(idxnew, val);
 | ||
|  |     else
 | ||
|  |       update_geq(idxnew, val);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void update ( const t_index idx, const t_float val ) const {
 | ||
|  |     // Update the element A[i] with val and re-arrange the indices to preserve
 | ||
|  |     // the heap condition.
 | ||
|  |     if (val<=A[idx])
 | ||
|  |       update_leq(idx, val);
 | ||
|  |     else
 | ||
|  |       update_geq(idx, val);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void update_leq ( const t_index idx, const t_float val ) const {
 | ||
|  |     // Use this when the new value is not more than the old value.
 | ||
|  |     A[idx] = val;
 | ||
|  |     update_leq_(R[idx]);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void update_geq ( const t_index idx, const t_float val ) const {
 | ||
|  |     // Use this when the new value is not less than the old value.
 | ||
|  |     A[idx] = val;
 | ||
|  |     update_geq_(R[idx]);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   void update_leq_ (t_index i) const {
 | ||
|  |     t_index j;
 | ||
|  |     for ( ; (i>0) && ( H(i)<H(j=(i-1)>>1) ); i=j)
 | ||
|  |       heap_swap(i,j);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void update_geq_ (t_index i) const {
 | ||
|  |     t_index j;
 | ||
|  |     for ( ; (j=2*i+1)<size; i=j) {
 | ||
|  |       if ( H(j)>=H(i) ) {
 | ||
|  |         ++j;
 | ||
|  |         if ( j>=size || H(j)>=H(i) ) break;
 | ||
|  |       }
 | ||
|  |       else if ( j+1<size && H(j+1)<H(j) ) ++j;
 | ||
|  |       heap_swap(i, j);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void heap_swap(const t_index i, const t_index j) const {
 | ||
|  |     // Swap two indices.
 | ||
|  |     t_index tmp = I[i];
 | ||
|  |     I[i] = I[j];
 | ||
|  |     I[j] = tmp;
 | ||
|  |     R[I[i]] = i;
 | ||
|  |     R[I[j]] = j;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   inline t_float H(const t_index i) const {
 | ||
|  |     return A[I[i]];
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | };
 | ||
|  | 
 | ||
|  | template <method_codes method, typename t_members>
 | ||
|  | static void generic_linkage(const t_index N, t_float * const D, t_members * const members, cluster_result & Z2) {
 | ||
|  |   /*
 | ||
|  |     N: integer, number of data points
 | ||
|  |     D: condensed distance matrix N*(N-1)/2
 | ||
|  |     Z2: output data structure
 | ||
|  |   */
 | ||
|  | 
 | ||
|  |   const t_index N_1 = N-1;
 | ||
|  |   t_index i, j; // loop variables
 | ||
|  |   t_index idx1, idx2; // row and column indices
 | ||
|  | 
 | ||
|  |   auto_array_ptr<t_index> n_nghbr(N_1); // array of nearest neighbors
 | ||
|  |   auto_array_ptr<t_float> mindist(N_1); // distances to the nearest neighbors
 | ||
|  |   auto_array_ptr<t_index> row_repr(N); // row_repr[i]: node number that the
 | ||
|  |                                        // i-th row represents
 | ||
|  |   doubly_linked_list active_nodes(N);
 | ||
|  |   binary_min_heap nn_distances(&*mindist, N_1); // minimum heap structure for
 | ||
|  |                         // the distance to the nearest neighbor of each point
 | ||
|  |   t_index node1, node2; // node numbers in the output
 | ||
|  |   t_float size1, size2; // and their cardinalities
 | ||
|  | 
 | ||
|  |   t_float min; // minimum and row index for nearest-neighbor search
 | ||
|  |   t_index idx;
 | ||
|  | 
 | ||
|  |   for (i=0; i<N; ++i)
 | ||
|  |     // Build a list of row ↔ node label assignments.
 | ||
|  |     // Initially i ↦ i
 | ||
|  |     row_repr[i] = i;
 | ||
|  | 
 | ||
|  |   // Initialize the minimal distances:
 | ||
|  |   // Find the nearest neighbor of each point.
 | ||
|  |   // n_nghbr[i] = argmin_{j>i} D(i,j) for i in range(N-1)
 | ||
|  |   t_float const * DD = D;
 | ||
|  |   for (i=0; i<N_1; ++i) {
 | ||
|  |     min = std::numeric_limits<t_float>::infinity();
 | ||
|  |     for (idx=j=i+1; j<N; ++j, ++DD) {
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |       if (*DD<min) {
 | ||
|  |         min = *DD;
 | ||
|  |         idx = j;
 | ||
|  |       }
 | ||
|  |       else if (fc_isnan(*DD))
 | ||
|  |         throw(nan_error());
 | ||
|  |     }
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |     mindist[i] = min;
 | ||
|  |     n_nghbr[i] = idx;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   // Put the minimal distances into a heap structure to make the repeated
 | ||
|  |   // global minimum searches fast.
 | ||
|  |   nn_distances.heapify();
 | ||
|  | 
 | ||
|  |   #ifdef FE_INVALID
 | ||
|  |   if (feclearexcept(FE_INVALID)) throw fenv_error();
 | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |   // Main loop: We have N-1 merging steps.
 | ||
|  |   for (i=0; i<N_1; ++i) {
 | ||
|  |     /*
 | ||
|  |       Here is a special feature that allows fast bookkeeping and updates of the
 | ||
|  |       minimal distances.
 | ||
|  | 
 | ||
|  |       mindist[i] stores a lower bound on the minimum distance of the point i to
 | ||
|  |       all points of higher index:
 | ||
|  | 
 | ||
|  |           mindist[i] ≥ min_{j>i} D(i,j)
 | ||
|  | 
 | ||
|  |       Normally, we have equality. However, this minimum may become invalid due
 | ||
|  |       to the updates in the distance matrix. The rules are:
 | ||
|  | 
 | ||
|  |       1) If mindist[i] is equal to D(i, n_nghbr[i]), this is the correct
 | ||
|  |          minimum and n_nghbr[i] is a nearest neighbor.
 | ||
|  | 
 | ||
|  |       2) If mindist[i] is smaller than D(i, n_nghbr[i]), this might not be the
 | ||
|  |          correct minimum. The minimum needs to be recomputed.
 | ||
|  | 
 | ||
|  |       3) mindist[i] is never bigger than the true minimum. Hence, we never
 | ||
|  |          miss the true minimum if we take the smallest mindist entry,
 | ||
|  |          re-compute the value if necessary (thus maybe increasing it) and
 | ||
|  |          looking for the now smallest mindist entry until a valid minimal
 | ||
|  |          entry is found. This step is done in the lines below.
 | ||
|  | 
 | ||
|  |       The update process for D below takes care that these rules are
 | ||
|  |       fulfilled. This makes sure that the minima in the rows D(i,i+1:)of D are
 | ||
|  |       re-calculated when necessary but re-calculation is avoided whenever
 | ||
|  |       possible.
 | ||
|  | 
 | ||
|  |       The re-calculation of the minima makes the worst-case runtime of this
 | ||
|  |       algorithm cubic in N. We avoid this whenever possible, and in most cases
 | ||
|  |       the runtime appears to be quadratic.
 | ||
|  |     */
 | ||
|  |     idx1 = nn_distances.argmin();
 | ||
|  |     if (method != METHOD_METR_SINGLE) {
 | ||
|  |       while ( mindist[idx1] < D_(idx1, n_nghbr[idx1]) ) {
 | ||
|  |         // Recompute the minimum mindist[idx1] and n_nghbr[idx1].
 | ||
|  |         n_nghbr[idx1] = j = active_nodes.succ[idx1]; // exists, maximally N-1
 | ||
|  |         min = D_(idx1,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           if (D_(idx1,j)<min) {
 | ||
|  |             min = D_(idx1,j);
 | ||
|  |             n_nghbr[idx1] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         /* Update the heap with the new true minimum and search for the
 | ||
|  |            (possibly different) minimal entry. */
 | ||
|  |         nn_distances.update_geq(idx1, min);
 | ||
|  |         idx1 = nn_distances.argmin();
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     nn_distances.heap_pop(); // Remove the current minimum from the heap.
 | ||
|  |     idx2 = n_nghbr[idx1];
 | ||
|  | 
 | ||
|  |     // Write the newly found minimal pair of nodes to the output array.
 | ||
|  |     node1 = row_repr[idx1];
 | ||
|  |     node2 = row_repr[idx2];
 | ||
|  | 
 | ||
|  |     if (method==METHOD_METR_AVERAGE ||
 | ||
|  |         method==METHOD_METR_WARD ||
 | ||
|  |         method==METHOD_METR_CENTROID) {
 | ||
|  |       size1 = static_cast<t_float>(members[idx1]);
 | ||
|  |       size2 = static_cast<t_float>(members[idx2]);
 | ||
|  |       members[idx2] += members[idx1];
 | ||
|  |     }
 | ||
|  |     Z2.append(node1, node2, mindist[idx1]);
 | ||
|  | 
 | ||
|  |     // Remove idx1 from the list of active indices (active_nodes).
 | ||
|  |     active_nodes.remove(idx1);
 | ||
|  |     // Index idx2 now represents the new (merged) node with label N+i.
 | ||
|  |     row_repr[idx2] = N+i;
 | ||
|  | 
 | ||
|  |     // Update the distance matrix
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_METR_SINGLE:
 | ||
|  |       /*
 | ||
|  |         Single linkage.
 | ||
|  | 
 | ||
|  |         Characteristic: new distances are never longer than the old distances.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_single(&D_(j, idx2), D_(j, idx1));
 | ||
|  |         if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_single(&D_(j, idx2), D_(idx1, j));
 | ||
|  |         // If the new value is below the old minimum in a row, update
 | ||
|  |         // the mindist and n_nghbr arrays.
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       // Recompute the minimum mindist[idx2] and n_nghbr[idx2].
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         min = mindist[idx2];
 | ||
|  |         for (j=active_nodes.succ[idx2]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_single(&D_(idx2, j), D_(idx1, j) );
 | ||
|  |           if (D_(idx2, j) < min) {
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |             min = D_(idx2, j);
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update_leq(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_COMPLETE:
 | ||
|  |       /*
 | ||
|  |         Complete linkage.
 | ||
|  | 
 | ||
|  |         Characteristic: new distances are never shorter than the old distances.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_complete(&D_(j, idx2), D_(j, idx1) );
 | ||
|  |         if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j])
 | ||
|  |         f_complete(&D_(j, idx2), D_(idx1, j) );
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       for (j=active_nodes.succ[idx2]; j<N; j=active_nodes.succ[j])
 | ||
|  |         f_complete(&D_(idx2, j), D_(idx1, j) );
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_AVERAGE: {
 | ||
|  |       /*
 | ||
|  |         Average linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       t_float s = size1/(size1+size2);
 | ||
|  |       t_float t = size2/(size1+size2);
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_average(&D_(j, idx2), D_(j, idx1), s, t);
 | ||
|  |         if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_average(&D_(j, idx2), D_(idx1, j), s, t);
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         f_average(&D_(idx2, j), D_(idx1, j), s, t);
 | ||
|  |         min = D_(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_average(&D_(idx2, j), D_(idx1, j), s, t);
 | ||
|  |           if (D_(idx2,j) < min) {
 | ||
|  |             min = D_(idx2,j);
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     case METHOD_METR_WEIGHTED:
 | ||
|  |       /*
 | ||
|  |         Weighted linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur.
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_weighted(&D_(j, idx2), D_(j, idx1) );
 | ||
|  |         if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_weighted(&D_(j, idx2), D_(idx1, j) );
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         f_weighted(&D_(idx2, j), D_(idx1, j) );
 | ||
|  |         min = D_(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_weighted(&D_(idx2, j), D_(idx1, j) );
 | ||
|  |           if (D_(idx2,j) < min) {
 | ||
|  |             min = D_(idx2,j);
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_WARD:
 | ||
|  |       /*
 | ||
|  |         Ward linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur, not smaller than min(d1,d2)
 | ||
|  |         but maybe bigger than max(d1,d2).
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_ward(&D_(j, idx2), D_(j, idx1), mindist[idx1],
 | ||
|  |                size1, size2, static_cast<t_float>(members[j]) );
 | ||
|  |         if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_ward(&D_(j, idx2), D_(idx1, j), mindist[idx1], size1, size2,
 | ||
|  |                static_cast<t_float>(members[j]) );
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         f_ward(&D_(idx2, j), D_(idx1, j), mindist[idx1],
 | ||
|  |                size1, size2, static_cast<t_float>(members[j]) );
 | ||
|  |         min = D_(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_ward(&D_(idx2, j), D_(idx1, j), mindist[idx1],
 | ||
|  |                  size1, size2, static_cast<t_float>(members[j]) );
 | ||
|  |           if (D_(idx2,j) < min) {
 | ||
|  |             min = D_(idx2,j);
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     case METHOD_METR_CENTROID: {
 | ||
|  |       /*
 | ||
|  |         Centroid linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur, not bigger than max(d1,d2)
 | ||
|  |         but maybe smaller than min(d1,d2).
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       t_float s = size1/(size1+size2);
 | ||
|  |       t_float t = size2/(size1+size2);
 | ||
|  |       t_float stc = s*t*mindist[idx1];
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_centroid(&D_(j, idx2), D_(j, idx1), stc, s, t);
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |         else if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_centroid(&D_(j, idx2), D_(idx1, j), stc, s, t);
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         f_centroid(&D_(idx2, j), D_(idx1, j), stc, s, t);
 | ||
|  |         min = D_(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_centroid(&D_(idx2, j), D_(idx1, j), stc, s, t);
 | ||
|  |           if (D_(idx2,j) < min) {
 | ||
|  |             min = D_(idx2,j);
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     case METHOD_METR_MEDIAN: {
 | ||
|  |       /*
 | ||
|  |         Median linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur, not bigger than max(d1,d2)
 | ||
|  |         but maybe smaller than min(d1,d2).
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       t_float c_4 = mindist[idx1]*.25;
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         f_median(&D_(j, idx2), D_(j, idx1), c_4 );
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |         else if (n_nghbr[j] == idx1)
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for (; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         f_median(&D_(j, idx2), D_(idx1, j), c_4 );
 | ||
|  |         if (D_(j, idx2) < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, D_(j, idx2));
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx2, N).
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         f_median(&D_(idx2, j), D_(idx1, j), c_4 );
 | ||
|  |         min = D_(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           f_median(&D_(idx2, j), D_(idx1, j), c_4 );
 | ||
|  |           if (D_(idx2,j) < min) {
 | ||
|  |             min = D_(idx2,j);
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     default:
 | ||
|  |       throw std::runtime_error(std::string("Invalid method."));
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  |   #ifdef FE_INVALID
 | ||
|  |   if (fetestexcept(FE_INVALID)) throw fenv_error();
 | ||
|  |   #endif
 | ||
|  | }
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Clustering methods for vector data
 | ||
|  | */
 | ||
|  | 
 | ||
|  | template <typename t_dissimilarity>
 | ||
|  | static void MST_linkage_core_vector(const t_index N,
 | ||
|  |                                     t_dissimilarity & dist,
 | ||
|  |                                     cluster_result & Z2) {
 | ||
|  | /*
 | ||
|  |     N: integer, number of data points
 | ||
|  |     dist: function pointer to the metric
 | ||
|  |     Z2: output data structure
 | ||
|  | 
 | ||
|  |     The basis of this algorithm is an algorithm by Rohlf:
 | ||
|  | 
 | ||
|  |     F. James Rohlf, Hierarchical clustering using the minimum spanning tree,
 | ||
|  |     The Computer Journal, vol. 16, 1973, p. 93–95.
 | ||
|  | */
 | ||
|  |   t_index i;
 | ||
|  |   t_index idx2;
 | ||
|  |   doubly_linked_list active_nodes(N);
 | ||
|  |   auto_array_ptr<t_float> d(N);
 | ||
|  | 
 | ||
|  |   t_index prev_node;
 | ||
|  |   t_float min;
 | ||
|  | 
 | ||
|  |   // first iteration
 | ||
|  |   idx2 = 1;
 | ||
|  |   min = std::numeric_limits<t_float>::infinity();
 | ||
|  |   for (i=1; i<N; ++i) {
 | ||
|  |     d[i] = dist(0,i);
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |     if (d[i] < min) {
 | ||
|  |       min = d[i];
 | ||
|  |       idx2 = i;
 | ||
|  |     }
 | ||
|  |     else if (fc_isnan(d[i]))
 | ||
|  |       throw (nan_error());
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   Z2.append(0, idx2, min);
 | ||
|  | 
 | ||
|  |   for (t_index j=1; j<N-1; ++j) {
 | ||
|  |     prev_node = idx2;
 | ||
|  |     active_nodes.remove(prev_node);
 | ||
|  | 
 | ||
|  |     idx2 = active_nodes.succ[0];
 | ||
|  |     min = d[idx2];
 | ||
|  | 
 | ||
|  |     for (i=idx2; i<N; i=active_nodes.succ[i]) {
 | ||
|  |       t_float tmp = dist(i, prev_node);
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |       if (d[i] > tmp)
 | ||
|  |         d[i] = tmp;
 | ||
|  |       else if (fc_isnan(tmp))
 | ||
|  |         throw (nan_error());
 | ||
|  | #if HAVE_DIAGNOSTIC
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  |       if (d[i] < min) {
 | ||
|  |         min = d[i];
 | ||
|  |         idx2 = i;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     Z2.append(prev_node, idx2, min);
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <method_codes_vector method, typename t_dissimilarity>
 | ||
|  | static void generic_linkage_vector(const t_index N,
 | ||
|  |                                    t_dissimilarity & dist,
 | ||
|  |                                    cluster_result & Z2) {
 | ||
|  |   /*
 | ||
|  |     N: integer, number of data points
 | ||
|  |     dist: function pointer to the metric
 | ||
|  |     Z2: output data structure
 | ||
|  | 
 | ||
|  |     This algorithm is valid for the distance update methods
 | ||
|  |     "Ward", "centroid" and "median" only!
 | ||
|  |   */
 | ||
|  |   const t_index N_1 = N-1;
 | ||
|  |   t_index i, j; // loop variables
 | ||
|  |   t_index idx1, idx2; // row and column indices
 | ||
|  | 
 | ||
|  |   auto_array_ptr<t_index> n_nghbr(N_1); // array of nearest neighbors
 | ||
|  |   auto_array_ptr<t_float> mindist(N_1); // distances to the nearest neighbors
 | ||
|  |   auto_array_ptr<t_index> row_repr(N); // row_repr[i]: node number that the
 | ||
|  |                                        // i-th row represents
 | ||
|  |   doubly_linked_list active_nodes(N);
 | ||
|  |   binary_min_heap nn_distances(&*mindist, N_1); // minimum heap structure for
 | ||
|  |                         // the distance to the nearest neighbor of each point
 | ||
|  |   t_index node1, node2;     // node numbers in the output
 | ||
|  |   t_float min; // minimum and row index for nearest-neighbor search
 | ||
|  | 
 | ||
|  |   for (i=0; i<N; ++i)
 | ||
|  |     // Build a list of row ↔ node label assignments.
 | ||
|  |     // Initially i ↦ i
 | ||
|  |     row_repr[i] = i;
 | ||
|  | 
 | ||
|  |   // Initialize the minimal distances:
 | ||
|  |   // Find the nearest neighbor of each point.
 | ||
|  |   // n_nghbr[i] = argmin_{j>i} D(i,j) for i in range(N-1)
 | ||
|  |   for (i=0; i<N_1; ++i) {
 | ||
|  |     min = std::numeric_limits<t_float>::infinity();
 | ||
|  |     t_index idx;
 | ||
|  |     for (idx=j=i+1; j<N; ++j) {
 | ||
|  |       t_float tmp;
 | ||
|  |       switch (method) {
 | ||
|  |       case METHOD_VECTOR_WARD:
 | ||
|  |         tmp = dist.ward_initial(i,j);
 | ||
|  |         break;
 | ||
|  |       default:
 | ||
|  |         tmp = dist.template sqeuclidean<true>(i,j);
 | ||
|  |       }
 | ||
|  |       if (tmp<min) {
 | ||
|  |         min = tmp;
 | ||
|  |         idx = j;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_VECTOR_WARD:
 | ||
|  |       mindist[i] = t_dissimilarity::ward_initial_conversion(min);
 | ||
|  |       break;
 | ||
|  |     default:
 | ||
|  |       mindist[i] = min;
 | ||
|  |     }
 | ||
|  |     n_nghbr[i] = idx;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   // Put the minimal distances into a heap structure to make the repeated
 | ||
|  |   // global minimum searches fast.
 | ||
|  |   nn_distances.heapify();
 | ||
|  | 
 | ||
|  |   // Main loop: We have N-1 merging steps.
 | ||
|  |   for (i=0; i<N_1; ++i) {
 | ||
|  |     idx1 = nn_distances.argmin();
 | ||
|  | 
 | ||
|  |     while ( active_nodes.is_inactive(n_nghbr[idx1]) ) {
 | ||
|  |       // Recompute the minimum mindist[idx1] and n_nghbr[idx1].
 | ||
|  |       n_nghbr[idx1] = j = active_nodes.succ[idx1]; // exists, maximally N-1
 | ||
|  |       switch (method) {
 | ||
|  |       case METHOD_VECTOR_WARD:
 | ||
|  |         min = dist.ward(idx1,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           t_float const tmp = dist.ward(idx1,j);
 | ||
|  |           if (tmp<min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx1] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         break;
 | ||
|  |       default:
 | ||
|  |         min = dist.template sqeuclidean<true>(idx1,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           t_float const tmp = dist.template sqeuclidean<true>(idx1,j);
 | ||
|  |           if (tmp<min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx1] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       /* Update the heap with the new true minimum and search for the (possibly
 | ||
|  |          different) minimal entry. */
 | ||
|  |       nn_distances.update_geq(idx1, min);
 | ||
|  |       idx1 = nn_distances.argmin();
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     nn_distances.heap_pop(); // Remove the current minimum from the heap.
 | ||
|  |     idx2 = n_nghbr[idx1];
 | ||
|  | 
 | ||
|  |     // Write the newly found minimal pair of nodes to the output array.
 | ||
|  |     node1 = row_repr[idx1];
 | ||
|  |     node2 = row_repr[idx2];
 | ||
|  | 
 | ||
|  |     Z2.append(node1, node2, mindist[idx1]);
 | ||
|  | 
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_VECTOR_WARD:
 | ||
|  |     case METHOD_VECTOR_CENTROID:
 | ||
|  |       dist.merge_inplace(idx1, idx2);
 | ||
|  |       break;
 | ||
|  |     case METHOD_VECTOR_MEDIAN:
 | ||
|  |       dist.merge_inplace_weighted(idx1, idx2);
 | ||
|  |       break;
 | ||
|  |     default:
 | ||
|  |       throw std::runtime_error(std::string("Invalid method."));
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     // Index idx2 now represents the new (merged) node with label N+i.
 | ||
|  |     row_repr[idx2] = N+i;
 | ||
|  |     // Remove idx1 from the list of active indices (active_nodes).
 | ||
|  |     active_nodes.remove(idx1);  // TBD later!!!
 | ||
|  | 
 | ||
|  |     // Update the distance matrix
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_VECTOR_WARD:
 | ||
|  |       /*
 | ||
|  |         Ward linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur, not smaller than min(d1,d2)
 | ||
|  |         but maybe bigger than max(d1,d2).
 | ||
|  |       */
 | ||
|  |       // Update the distance matrix in the range [start, idx1).
 | ||
|  |       for (j=active_nodes.start; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |         if (n_nghbr[j] == idx2) {
 | ||
|  |           n_nghbr[j] = idx1; // invalidate
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Update the distance matrix in the range (idx1, idx2).
 | ||
|  |       for ( ; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         t_float const tmp = dist.ward(j, idx2);
 | ||
|  |         if (tmp < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, tmp);
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |         else if (n_nghbr[j]==idx2) {
 | ||
|  |           n_nghbr[j] = idx1; // invalidate
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       // Find the nearest neighbor for idx2.
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         min = dist.ward(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           t_float const tmp = dist.ward(idx2,j);
 | ||
|  |           if (tmp < min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |       break;
 | ||
|  | 
 | ||
|  |     default:
 | ||
|  |       /*
 | ||
|  |         Centroid and median linkage.
 | ||
|  | 
 | ||
|  |         Shorter and longer distances can occur, not bigger than max(d1,d2)
 | ||
|  |         but maybe smaller than min(d1,d2).
 | ||
|  |       */
 | ||
|  |       for (j=active_nodes.start; j<idx2; j=active_nodes.succ[j]) {
 | ||
|  |         t_float const tmp = dist.template sqeuclidean<true>(j, idx2);
 | ||
|  |         if (tmp < mindist[j]) {
 | ||
|  |           nn_distances.update_leq(j, tmp);
 | ||
|  |           n_nghbr[j] = idx2;
 | ||
|  |         }
 | ||
|  |         else if (n_nghbr[j] == idx2)
 | ||
|  |           n_nghbr[j] = idx1; // invalidate
 | ||
|  |       }
 | ||
|  |       // Find the nearest neighbor for idx2.
 | ||
|  |       if (idx2<N_1) {
 | ||
|  |         n_nghbr[idx2] = j = active_nodes.succ[idx2]; // exists, maximally N-1
 | ||
|  |         min = dist.template sqeuclidean<true>(idx2,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<N; j=active_nodes.succ[j]) {
 | ||
|  |           t_float const tmp = dist.template sqeuclidean<true>(idx2, j);
 | ||
|  |           if (tmp < min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx2] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         nn_distances.update(idx2, min);
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <method_codes_vector method, typename t_dissimilarity>
 | ||
|  | static void generic_linkage_vector_alternative(const t_index N,
 | ||
|  |                                                t_dissimilarity & dist,
 | ||
|  |                                                cluster_result & Z2) {
 | ||
|  |   /*
 | ||
|  |     N: integer, number of data points
 | ||
|  |     dist: function pointer to the metric
 | ||
|  |     Z2: output data structure
 | ||
|  | 
 | ||
|  |     This algorithm is valid for the distance update methods
 | ||
|  |     "Ward", "centroid" and "median" only!
 | ||
|  |   */
 | ||
|  |   const t_index N_1 = N-1;
 | ||
|  |   t_index i, j=0; // loop variables
 | ||
|  |   t_index idx1, idx2; // row and column indices
 | ||
|  | 
 | ||
|  |   auto_array_ptr<t_index> n_nghbr(2*N-2); // array of nearest neighbors
 | ||
|  |   auto_array_ptr<t_float> mindist(2*N-2); // distances to the nearest neighbors
 | ||
|  | 
 | ||
|  |   doubly_linked_list active_nodes(N+N_1);
 | ||
|  |   binary_min_heap nn_distances(&*mindist, N_1, 2*N-2, 1); // minimum heap
 | ||
|  |       // structure for the distance to the nearest neighbor of each point
 | ||
|  | 
 | ||
|  |   t_float min; // minimum for nearest-neighbor searches
 | ||
|  | 
 | ||
|  |   // Initialize the minimal distances:
 | ||
|  |   // Find the nearest neighbor of each point.
 | ||
|  |   // n_nghbr[i] = argmin_{j>i} D(i,j) for i in range(N-1)
 | ||
|  |   for (i=1; i<N; ++i) {
 | ||
|  |     min = std::numeric_limits<t_float>::infinity();
 | ||
|  |     t_index idx;
 | ||
|  |     for (idx=j=0; j<i; ++j) {
 | ||
|  |       t_float tmp;
 | ||
|  |       switch (method) {
 | ||
|  |       case METHOD_VECTOR_WARD:
 | ||
|  |         tmp = dist.ward_initial(i,j);
 | ||
|  |         break;
 | ||
|  |       default:
 | ||
|  |         tmp = dist.template sqeuclidean<true>(i,j);
 | ||
|  |       }
 | ||
|  |       if (tmp<min) {
 | ||
|  |         min = tmp;
 | ||
|  |         idx = j;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     switch (method) {
 | ||
|  |     case METHOD_VECTOR_WARD:
 | ||
|  |       mindist[i] = t_dissimilarity::ward_initial_conversion(min);
 | ||
|  |       break;
 | ||
|  |     default:
 | ||
|  |       mindist[i] = min;
 | ||
|  |     }
 | ||
|  |     n_nghbr[i] = idx;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   // Put the minimal distances into a heap structure to make the repeated
 | ||
|  |   // global minimum searches fast.
 | ||
|  |   nn_distances.heapify();
 | ||
|  | 
 | ||
|  |   // Main loop: We have N-1 merging steps.
 | ||
|  |   for (i=N; i<N+N_1; ++i) {
 | ||
|  |     /*
 | ||
|  |       The bookkeeping is different from the "stored matrix approach" algorithm
 | ||
|  |       generic_linkage.
 | ||
|  | 
 | ||
|  |       mindist[i] stores a lower bound on the minimum distance of the point i to
 | ||
|  |       all points of *lower* index:
 | ||
|  | 
 | ||
|  |           mindist[i] ≥ min_{j<i} D(i,j)
 | ||
|  | 
 | ||
|  |       Moreover, new nodes do not re-use one of the old indices, but they are
 | ||
|  |       given a new, unique index (SciPy convention: initial nodes are 0,…,N−1,
 | ||
|  |       new nodes are N,…,2N−2).
 | ||
|  | 
 | ||
|  |       Invalid nearest neighbors are not recognized by the fact that the stored
 | ||
|  |       distance is smaller than the actual distance, but the list active_nodes
 | ||
|  |       maintains a flag whether a node is inactive. If n_nghbr[i] points to an
 | ||
|  |       active node, the entries nn_distances[i] and n_nghbr[i] are valid,
 | ||
|  |       otherwise they must be recomputed.
 | ||
|  |     */
 | ||
|  |     idx1 = nn_distances.argmin();
 | ||
|  |     while ( active_nodes.is_inactive(n_nghbr[idx1]) ) {
 | ||
|  |       // Recompute the minimum mindist[idx1] and n_nghbr[idx1].
 | ||
|  |       n_nghbr[idx1] = j = active_nodes.start;
 | ||
|  |       switch (method) {
 | ||
|  |       case METHOD_VECTOR_WARD:
 | ||
|  |         min = dist.ward_extended(idx1,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |           t_float tmp = dist.ward_extended(idx1,j);
 | ||
|  |           if (tmp<min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx1] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |         break;
 | ||
|  |       default:
 | ||
|  |         min = dist.sqeuclidean_extended(idx1,j);
 | ||
|  |         for (j=active_nodes.succ[j]; j<idx1; j=active_nodes.succ[j]) {
 | ||
|  |           t_float const tmp = dist.sqeuclidean_extended(idx1,j);
 | ||
|  |           if (tmp<min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[idx1] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       /* Update the heap with the new true minimum and search for the (possibly
 | ||
|  |          different) minimal entry. */
 | ||
|  |       nn_distances.update_geq(idx1, min);
 | ||
|  |       idx1 = nn_distances.argmin();
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     idx2 = n_nghbr[idx1];
 | ||
|  |     active_nodes.remove(idx1);
 | ||
|  |     active_nodes.remove(idx2);
 | ||
|  | 
 | ||
|  |     Z2.append(idx1, idx2, mindist[idx1]);
 | ||
|  | 
 | ||
|  |     if (i<2*N_1) {
 | ||
|  |       switch (method) {
 | ||
|  |       case METHOD_VECTOR_WARD:
 | ||
|  |       case METHOD_VECTOR_CENTROID:
 | ||
|  |         dist.merge(idx1, idx2, i);
 | ||
|  |         break;
 | ||
|  | 
 | ||
|  |       case METHOD_VECTOR_MEDIAN:
 | ||
|  |         dist.merge_weighted(idx1, idx2, i);
 | ||
|  |         break;
 | ||
|  | 
 | ||
|  |       default:
 | ||
|  |         throw std::runtime_error(std::string("Invalid method."));
 | ||
|  |       }
 | ||
|  | 
 | ||
|  |       n_nghbr[i] = active_nodes.start;
 | ||
|  |       if (method==METHOD_VECTOR_WARD) {
 | ||
|  |         /*
 | ||
|  |           Ward linkage.
 | ||
|  | 
 | ||
|  |           Shorter and longer distances can occur, not smaller than min(d1,d2)
 | ||
|  |           but maybe bigger than max(d1,d2).
 | ||
|  |         */
 | ||
|  |         min = dist.ward_extended(active_nodes.start, i);
 | ||
|  |         for (j=active_nodes.succ[active_nodes.start]; j<i;
 | ||
|  |              j=active_nodes.succ[j]) {
 | ||
|  |           t_float tmp = dist.ward_extended(j, i);
 | ||
|  |           if (tmp < min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[i] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       else {
 | ||
|  |         /*
 | ||
|  |           Centroid and median linkage.
 | ||
|  | 
 | ||
|  |           Shorter and longer distances can occur, not bigger than max(d1,d2)
 | ||
|  |           but maybe smaller than min(d1,d2).
 | ||
|  |         */
 | ||
|  |         min = dist.sqeuclidean_extended(active_nodes.start, i);
 | ||
|  |         for (j=active_nodes.succ[active_nodes.start]; j<i;
 | ||
|  |              j=active_nodes.succ[j]) {
 | ||
|  |           t_float tmp = dist.sqeuclidean_extended(j, i);
 | ||
|  |           if (tmp < min) {
 | ||
|  |             min = tmp;
 | ||
|  |             n_nghbr[i] = j;
 | ||
|  |           }
 | ||
|  |         }
 | ||
|  |       }
 | ||
|  |       if (idx2<active_nodes.start)  {
 | ||
|  |         nn_distances.remove(active_nodes.start);
 | ||
|  |       } else {
 | ||
|  |         nn_distances.remove(idx2);
 | ||
|  |       }
 | ||
|  |       nn_distances.replace(idx1, i, min);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | #if HAVE_VISIBILITY
 | ||
|  | #pragma GCC visibility pop
 | ||
|  | #endif
 |