Remove lane planning code (#25651)
	
		
	
				
					
				
			* Remove all lane planning logic * Revert "Update ref" This reverts commit 8dcb08ebccbb5641443459ac40601a95cf605682. * bump cereal * Update refpull/214/head
							parent
							
								
									01a73b14d8
								
							
						
					
					
						commit
						2eff6d0ebd
					
				
				 7 changed files with 17 additions and 132 deletions
			
			
		| @ -1 +1 @@ | |||||||
| Subproject commit d3a943ef660dd29f73700806ee0baf1d5aff6834 | Subproject commit 632395010102aabdd0ed87aba50d25042cdcb70e | ||||||
| @ -1,97 +0,0 @@ | |||||||
| import numpy as np |  | ||||||
| from cereal import log |  | ||||||
| from common.filter_simple import FirstOrderFilter |  | ||||||
| from common.numpy_fast import interp |  | ||||||
| from common.realtime import DT_MDL |  | ||||||
| from system.swaglog import cloudlog |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| TRAJECTORY_SIZE = 33 |  | ||||||
| # camera offset is meters from center car to camera |  | ||||||
| # model path is in the frame of the camera |  | ||||||
| PATH_OFFSET = 0.00 |  | ||||||
| CAMERA_OFFSET = 0.04 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| class LanePlanner: |  | ||||||
|   def __init__(self, wide_camera=False): |  | ||||||
|     self.ll_t = np.zeros((TRAJECTORY_SIZE,)) |  | ||||||
|     self.ll_x = np.zeros((TRAJECTORY_SIZE,)) |  | ||||||
|     self.lll_y = np.zeros((TRAJECTORY_SIZE,)) |  | ||||||
|     self.rll_y = np.zeros((TRAJECTORY_SIZE,)) |  | ||||||
|     self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL) |  | ||||||
|     self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL) |  | ||||||
|     self.lane_width = 3.7 |  | ||||||
| 
 |  | ||||||
|     self.lll_prob = 0. |  | ||||||
|     self.rll_prob = 0. |  | ||||||
|     self.d_prob = 0. |  | ||||||
| 
 |  | ||||||
|     self.lll_std = 0. |  | ||||||
|     self.rll_std = 0. |  | ||||||
| 
 |  | ||||||
|     self.l_lane_change_prob = 0. |  | ||||||
|     self.r_lane_change_prob = 0. |  | ||||||
| 
 |  | ||||||
|     self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET |  | ||||||
|     self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET |  | ||||||
| 
 |  | ||||||
|   def parse_model(self, md): |  | ||||||
|     lane_lines = md.laneLines |  | ||||||
|     if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE: |  | ||||||
|       self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2 |  | ||||||
|       # left and right ll x is the same |  | ||||||
|       self.ll_x = lane_lines[1].x |  | ||||||
|       self.lll_y = np.array(lane_lines[1].y) + self.camera_offset |  | ||||||
|       self.rll_y = np.array(lane_lines[2].y) + self.camera_offset |  | ||||||
|       self.lll_prob = md.laneLineProbs[1] |  | ||||||
|       self.rll_prob = md.laneLineProbs[2] |  | ||||||
|       self.lll_std = md.laneLineStds[1] |  | ||||||
|       self.rll_std = md.laneLineStds[2] |  | ||||||
| 
 |  | ||||||
|     desire_state = md.meta.desireState |  | ||||||
|     if len(desire_state): |  | ||||||
|       self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft] |  | ||||||
|       self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight] |  | ||||||
| 
 |  | ||||||
|   def get_d_path(self, v_ego, path_t, path_xyz): |  | ||||||
|     # Reduce reliance on lanelines that are too far apart or |  | ||||||
|     # will be in a few seconds |  | ||||||
|     path_xyz[:, 1] += self.path_offset |  | ||||||
|     l_prob, r_prob = self.lll_prob, self.rll_prob |  | ||||||
|     width_pts = self.rll_y - self.lll_y |  | ||||||
|     prob_mods = [] |  | ||||||
|     for t_check in (0.0, 1.5, 3.0): |  | ||||||
|       width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts) |  | ||||||
|       prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0])) |  | ||||||
|     mod = min(prob_mods) |  | ||||||
|     l_prob *= mod |  | ||||||
|     r_prob *= mod |  | ||||||
| 
 |  | ||||||
|     # Reduce reliance on uncertain lanelines |  | ||||||
|     l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0]) |  | ||||||
|     r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0]) |  | ||||||
|     l_prob *= l_std_mod |  | ||||||
|     r_prob *= r_std_mod |  | ||||||
| 
 |  | ||||||
|     # Find current lanewidth |  | ||||||
|     self.lane_width_certainty.update(l_prob * r_prob) |  | ||||||
|     current_lane_width = abs(self.rll_y[0] - self.lll_y[0]) |  | ||||||
|     self.lane_width_estimate.update(current_lane_width) |  | ||||||
|     speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5]) |  | ||||||
|     self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \ |  | ||||||
|                       (1 - self.lane_width_certainty.x) * speed_lane_width |  | ||||||
| 
 |  | ||||||
|     clipped_lane_width = min(4.0, self.lane_width) |  | ||||||
|     path_from_left_lane = self.lll_y + clipped_lane_width / 2.0 |  | ||||||
|     path_from_right_lane = self.rll_y - clipped_lane_width / 2.0 |  | ||||||
| 
 |  | ||||||
|     self.d_prob = l_prob + r_prob - l_prob * r_prob |  | ||||||
|     lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) |  | ||||||
|     safe_idxs = np.isfinite(self.ll_t) |  | ||||||
|     if safe_idxs[0]: |  | ||||||
|       lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs]) |  | ||||||
|       path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1] |  | ||||||
|     else: |  | ||||||
|       cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring") |  | ||||||
|     return path_xyz |  | ||||||
| @ -1 +1 @@ | |||||||
| 5cb8e7ea92f333bdb49682b0593ab2ae5a5f3824 | e1c189b002a179763fa34f24e5d96f2b2d0c4c49 | ||||||
|  | |||||||
					Loading…
					
					
				
		Reference in new issue