parent
							
								
									8321cf283a
								
							
						
					
					
						commit
						4212b7f91c
					
				
				 2 changed files with 311 additions and 0 deletions
			
			
		@ -0,0 +1,134 @@ | 
				
			||||
#!/usr/bin/env python3 | 
				
			||||
import numpy as np | 
				
			||||
from live_model import gen_model, States | 
				
			||||
 | 
				
			||||
from .kalman_helpers import ObservationKind | 
				
			||||
from .ekf_sym import EKF_sym | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class LiveKalman(): | 
				
			||||
  def __init__(self, N=0, max_tracks=3000): | 
				
			||||
    x_initial = np.array([-2.7e6, 4.2e6, 3.8e6, | 
				
			||||
                          1, 0, 0, 0, | 
				
			||||
                          0, 0, 0, | 
				
			||||
                          0, 0, 0, | 
				
			||||
                          0, 0, 0, | 
				
			||||
                          1, | 
				
			||||
                          0, 0, 0, | 
				
			||||
                          0, 0, 0]) | 
				
			||||
 | 
				
			||||
    # state covariance | 
				
			||||
    P_initial = np.diag([10000**2, 10000**2, 10000**2, | 
				
			||||
                         10**2, 10**2, 10**2, | 
				
			||||
                         10**2, 10**2, 10**2, | 
				
			||||
                         1**2, 1**2, 1**2, | 
				
			||||
                         0.05**2, 0.05**2, 0.05**2, | 
				
			||||
                         0.02**2, | 
				
			||||
                         1**2, 1**2, 1**2, | 
				
			||||
                         (0.01)**2, (0.01)**2, (0.01)**2]) | 
				
			||||
 | 
				
			||||
    # process noise | 
				
			||||
    Q = np.diag([0.03**2, 0.03**2, 0.03**2, | 
				
			||||
                 0.0**2, 0.0**2, 0.0**2, | 
				
			||||
                 0.0**2, 0.0**2, 0.0**2, | 
				
			||||
                 0.1**2, 0.1**2, 0.1**2, | 
				
			||||
                 (0.005/100)**2, (0.005/100)**2, (0.005/100)**2, | 
				
			||||
                 (0.02/100)**2, | 
				
			||||
                 3**2, 3**2, 3**2, | 
				
			||||
                 0.001**2, | 
				
			||||
                 (0.05/60)**2, (0.05/60)**2, (0.05/60)**2]) | 
				
			||||
 | 
				
			||||
    self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), | 
				
			||||
                      ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]), | 
				
			||||
                      ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]), | 
				
			||||
                      ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]), | 
				
			||||
                      ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]), | 
				
			||||
                      ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]), | 
				
			||||
                      ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])} | 
				
			||||
 | 
				
			||||
 | 
				
			||||
    name = 'live' % N | 
				
			||||
    gen_model(name, self.dim_state, self.dim_state_err) | 
				
			||||
 | 
				
			||||
    # init filter | 
				
			||||
    self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_state, self.dim_state_err) | 
				
			||||
 | 
				
			||||
  @property | 
				
			||||
  def x(self): | 
				
			||||
    return self.filter.state() | 
				
			||||
 | 
				
			||||
  @property | 
				
			||||
  def t(self): | 
				
			||||
    return self.filter.filter_time | 
				
			||||
 | 
				
			||||
  @property | 
				
			||||
  def P(self): | 
				
			||||
    return self.filter.covs() | 
				
			||||
 | 
				
			||||
  def predict(self, t): | 
				
			||||
    return self.filter.predict(t) | 
				
			||||
 | 
				
			||||
  def rts_smooth(self, estimates): | 
				
			||||
    return self.filter.rts_smooth(estimates, norm_quats=True) | 
				
			||||
 | 
				
			||||
  def init_state(self, state, covs_diag=None, covs=None, filter_time=None): | 
				
			||||
    if covs_diag is not None: | 
				
			||||
      P = np.diag(covs_diag) | 
				
			||||
    elif covs is not None: | 
				
			||||
      P = covs | 
				
			||||
    else: | 
				
			||||
      P = self.filter.covs() | 
				
			||||
    self.filter.init_state(state, P, filter_time) | 
				
			||||
 | 
				
			||||
  def predict_and_observe(self, t, kind, data): | 
				
			||||
    if len(data) > 0: | 
				
			||||
      data = np.atleast_2d(data) | 
				
			||||
    if kind == ObservationKind.CAMERA_ODO_TRANSLATION: | 
				
			||||
      r = self.predict_and_update_odo_trans(data, t, kind) | 
				
			||||
    elif kind == ObservationKind.CAMERA_ODO_ROTATION: | 
				
			||||
      r = self.predict_and_update_odo_rot(data, t, kind) | 
				
			||||
    elif kind == ObservationKind.ODOMETRIC_SPEED: | 
				
			||||
      r = self.predict_and_update_odo_speed(data, t, kind) | 
				
			||||
    else: | 
				
			||||
      r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data))) | 
				
			||||
    # Normalize quats | 
				
			||||
    quat_norm = np.linalg.norm(self.filter.x[3:7,0]) | 
				
			||||
    # Should not continue if the quats behave this weirdly | 
				
			||||
    if not 0.1 < quat_norm < 10: | 
				
			||||
      raise RuntimeError("Sir! The filter's gone all wobbly!") | 
				
			||||
    self.filter.x[3:7,0] = self.filter.x[3:7,0]/quat_norm | 
				
			||||
    return r | 
				
			||||
 | 
				
			||||
  def get_R(self, kind, n): | 
				
			||||
    obs_noise = self.obs_noise[kind] | 
				
			||||
    dim = obs_noise.shape[0] | 
				
			||||
    R = np.zeros((n, dim, dim)) | 
				
			||||
    for i in range(n): | 
				
			||||
      R[i,:,:] = obs_noise | 
				
			||||
    return R | 
				
			||||
 | 
				
			||||
  def predict_and_update_odo_speed(self, speed, t, kind): | 
				
			||||
    z = np.array(speed) | 
				
			||||
    R = np.zeros((len(speed), 1, 1)) | 
				
			||||
    for i, _ in enumerate(z): | 
				
			||||
      R[i,:,:] = np.diag([0.2**2]) | 
				
			||||
    return self.filter.predict_and_update_batch(t, kind, z, R) | 
				
			||||
 | 
				
			||||
  def predict_and_update_odo_trans(self, trans, t, kind): | 
				
			||||
    z = trans[:,:3] | 
				
			||||
    R = np.zeros((len(trans), 3, 3)) | 
				
			||||
    for i, _ in enumerate(z): | 
				
			||||
        R[i,:,:] = np.diag(trans[i,3:]**2) | 
				
			||||
    return self.filter.predict_and_update_batch(t, kind, z, R) | 
				
			||||
 | 
				
			||||
  def predict_and_update_odo_rot(self, rot, t, kind): | 
				
			||||
    z = rot[:,:3] | 
				
			||||
    R = np.zeros((len(rot), 3, 3)) | 
				
			||||
    for i, _ in enumerate(z): | 
				
			||||
        R[i,:,:] = np.diag(rot[i,3:]**2) | 
				
			||||
    return self.filter.predict_and_update_batch(t, kind, z, R) | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__": | 
				
			||||
  LiveKalman() | 
				
			||||
@ -0,0 +1,177 @@ | 
				
			||||
import numpy as np | 
				
			||||
import sympy as sp | 
				
			||||
import os | 
				
			||||
 | 
				
			||||
from laika.constants import EARTH_GM | 
				
			||||
from .kalman_helpers import ObservationKind | 
				
			||||
from .ekf_sym import gen_code | 
				
			||||
from common.sympy_helpers import euler_rotate, quat_rotate, quat_matrix_r | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class States(): | 
				
			||||
  ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters | 
				
			||||
  ECEF_ORIENTATION = slice(3, 7)  # quat for pose of phone in ecef | 
				
			||||
  ECEF_VELOCITY = slice(7, 10)  # ecef velocity in m/s | 
				
			||||
  ANGULAR_VELOCITY = slice(10, 13)  # roll, pitch and yaw rates in device frame in radians/s | 
				
			||||
  GYRO_BIAS = slice(13, 16)  # roll, pitch and yaw biases | 
				
			||||
  ODO_SCALE = slice(16, 17)  # odometer scale | 
				
			||||
  ACCELERATION = slice(17, 20)  # Acceleration in device frame in m/s**2 | 
				
			||||
  IMU_OFFSET = slice(20, 23)  # imu offset angles in radians | 
				
			||||
 | 
				
			||||
  ECEF_POS_ERR = slice(0, 3) | 
				
			||||
  ECEF_ORIENTATION_ERR = slice(3, 6) | 
				
			||||
  ECEF_VELOCITY_ERR = slice(6, 9) | 
				
			||||
  ANGULAR_VELOCITY_ERR = slice(9, 12) | 
				
			||||
  GYRO_BIAS_ERR = slice(12, 15) | 
				
			||||
  ODO_SCALE_ERR = slice(15, 16) | 
				
			||||
  ACCELERATION_ERR = slice(16, 19) | 
				
			||||
  IMU_OFFSET_ERR = slice(19, 22) | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def gen_model(name, | 
				
			||||
                 dim_state, dim_state_err, | 
				
			||||
                 maha_test_kinds): | 
				
			||||
 | 
				
			||||
 | 
				
			||||
  # check if rebuild is needed | 
				
			||||
  try: | 
				
			||||
    dir_path = os.path.dirname(__file__) | 
				
			||||
    deps = [dir_path + '/' + 'ekf_c.c', | 
				
			||||
            dir_path + '/' + 'ekf_sym.py', | 
				
			||||
            dir_path + '/' + name + '_model.py', | 
				
			||||
            dir_path + '/' + name + '_kf.py'] | 
				
			||||
 | 
				
			||||
    outs = [dir_path + '/' + name + '.o', | 
				
			||||
            dir_path + '/' + name + '.so', | 
				
			||||
            dir_path + '/' + name + '.cpp'] | 
				
			||||
    out_times = list(map(os.path.getmtime, outs)) | 
				
			||||
    dep_times = list(map(os.path.getmtime, deps)) | 
				
			||||
    rebuild = os.getenv("REBUILD", False) | 
				
			||||
    if min(out_times) > max(dep_times) and not rebuild: | 
				
			||||
      return | 
				
			||||
    list(map(os.remove, outs)) | 
				
			||||
  except OSError: | 
				
			||||
    pass | 
				
			||||
 | 
				
			||||
  # make functions and jacobians with sympy | 
				
			||||
  # state variables | 
				
			||||
  state_sym = sp.MatrixSymbol('state', dim_state, 1) | 
				
			||||
  state = sp.Matrix(state_sym) | 
				
			||||
  x,y,z = state[States.ECEF_POS,:] | 
				
			||||
  q = state[States.ECEF_ORIENTATION,:] | 
				
			||||
  v = state[States.ECEF_VELOCITY,:] | 
				
			||||
  vx, vy, vz = v | 
				
			||||
  omega = state[States.GYRO_BIAS,:] | 
				
			||||
  vroll, vpitch, vyaw = omega | 
				
			||||
  roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS,:] | 
				
			||||
  odo_scale = state[16,:] | 
				
			||||
  acceleration = state[States.ACCELERATION,:] | 
				
			||||
  imu_angles= state[States.IMU_OFFSET,:] | 
				
			||||
 | 
				
			||||
  dt = sp.Symbol('dt') | 
				
			||||
 | 
				
			||||
  # calibration and attitude rotation matrices | 
				
			||||
  quat_rot = quat_rotate(*q) | 
				
			||||
 | 
				
			||||
  # Got the quat predict equations from here | 
				
			||||
  # A New Quaternion-Based Kalman Filter for | 
				
			||||
  # Real-Time Attitude Estimation Using the Two-Step | 
				
			||||
  # Geometrically-Intuitive Correction Algorithm | 
				
			||||
  A = 0.5*sp.Matrix([[0, -vroll, -vpitch, -vyaw], | 
				
			||||
                 [vroll, 0, vyaw, -vpitch], | 
				
			||||
                 [vpitch, -vyaw, 0, vroll], | 
				
			||||
                 [vyaw, vpitch, -vroll, 0]]) | 
				
			||||
  q_dot = A * q | 
				
			||||
 | 
				
			||||
  # Time derivative of the state as a function of state | 
				
			||||
  state_dot = sp.Matrix(np.zeros((dim_state, 1))) | 
				
			||||
  state_dot[States.ECEF_POS,:] = v | 
				
			||||
  state_dot[States.ECEF_ORIENTATION,:] = q_dot | 
				
			||||
  state_dot[States.ECEF_VELOCITY,0] = quat_rot * acceleration | 
				
			||||
 | 
				
			||||
  # Basic descretization, 1st order intergrator | 
				
			||||
  # Can be pretty bad if dt is big | 
				
			||||
  f_sym = state + dt*state_dot | 
				
			||||
 | 
				
			||||
  state_err_sym = sp.MatrixSymbol('state_err',dim_state_err,1) | 
				
			||||
  state_err = sp.Matrix(state_err_sym) | 
				
			||||
  quat_err = state_err[States.ECEF_ORIENTATION_ERR,:] | 
				
			||||
  v_err = state_err[States.ECEF_VELOCITY_ERR,:] | 
				
			||||
  omega_err = state_err[States.ANGULAR_VELOCITY_ERR,:] | 
				
			||||
  acceleration_err = state_err[States.ACCELERATION_ERR,:] | 
				
			||||
 | 
				
			||||
  # Time derivative of the state error as a function of state error and state | 
				
			||||
  quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) | 
				
			||||
  q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) | 
				
			||||
  state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) | 
				
			||||
  state_err_dot[States.ECEF_POS_ERR,:] = v_err | 
				
			||||
  state_err_dot[States.ECEF_ORIENTATION_ERR,:] = q_err_dot | 
				
			||||
  state_err_dot[States.ECEF_VELOCITY_ERR,:] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) | 
				
			||||
  f_err_sym = state_err + dt*state_err_dot | 
				
			||||
 | 
				
			||||
  # Observation matrix modifier | 
				
			||||
  H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) | 
				
			||||
  H_mod_sym[0:3, 0:3] = np.eye(3) | 
				
			||||
 | 
				
			||||
  H_mod_sym[3:7,3:6] = 0.5*quat_matrix_r(state[3:7])[:,1:] | 
				
			||||
 | 
				
			||||
  # these error functions are defined so that say there | 
				
			||||
  # is a nominal x and true x: | 
				
			||||
  # true x = err_function(nominal x, delta x) | 
				
			||||
  # delta x = inv_err_function(nominal x, true x) | 
				
			||||
  nom_x = sp.MatrixSymbol('nom_x',dim_state,1) | 
				
			||||
  true_x = sp.MatrixSymbol('true_x',dim_state,1) | 
				
			||||
  delta_x = sp.MatrixSymbol('delta_x',dim_state_err,1) | 
				
			||||
 | 
				
			||||
  err_function_sym = sp.Matrix(np.zeros((dim_state,1))) | 
				
			||||
  delta_quat = sp.Matrix(np.ones((4))) | 
				
			||||
  delta_quat[1:,:] = sp.Matrix(0.5*delta_x[3:6,:]) | 
				
			||||
  err_function_sym[3:7,0] = quat_matrix_r(nom_x[3:6,0])*delta_quat | 
				
			||||
  err_function_sym[0:3,:] = sp.Matrix(nom_x[0:3,:] + delta_x[0:3,:]) | 
				
			||||
 | 
				
			||||
  inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1))) | 
				
			||||
  inv_err_function_sym[0:3,0] = sp.Matrix(-nom_x[0:3,0] + true_x[0:3,0]) | 
				
			||||
  delta_quat = quat_matrix_r(nom_x[3:7,0]).T*true_x[3:7,0] | 
				
			||||
  inv_err_function_sym[3:6,0] = sp.Matrix(2*delta_quat[1:]) | 
				
			||||
 | 
				
			||||
  eskf_params = [[err_function_sym, nom_x, delta_x], | 
				
			||||
                 [inv_err_function_sym, nom_x, true_x], | 
				
			||||
                 H_mod_sym, f_err_sym, state_err_sym] | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
  # | 
				
			||||
  # Observation functions | 
				
			||||
  # | 
				
			||||
 | 
				
			||||
 | 
				
			||||
  imu_rot = euler_rotate(*imu_angles) | 
				
			||||
  h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias, | 
				
			||||
                                 vpitch + pitch_bias, | 
				
			||||
                                 vyaw + yaw_bias]) | 
				
			||||
 | 
				
			||||
  pos = sp.Matrix([x, y, z]) | 
				
			||||
  gravity = quat_rot.T * ((EARTH_GM/((x**2 + y**2 + z**2)**(3.0/2.0)))*pos) | 
				
			||||
  h_acc_sym = imu_rot*(gravity + acceleration) | 
				
			||||
  h_phone_rot_sym = sp.Matrix([vroll, | 
				
			||||
                               vpitch, | 
				
			||||
                               vyaw]) | 
				
			||||
  speed = vx**2 + vy**2 + vz**2 | 
				
			||||
  h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale]) | 
				
			||||
 | 
				
			||||
  h_pos_sym = sp.Matrix([x, y, z]) | 
				
			||||
  h_imu_frame_sym = sp.Matrix(imu_angles) | 
				
			||||
 | 
				
			||||
  h_relative_motion = sp.Matrix(quat_rot.T * v) | 
				
			||||
 | 
				
			||||
 | 
				
			||||
  obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None], | 
				
			||||
             [h_gyro_sym, ObservationKind.PHONE_GYRO, None], | 
				
			||||
             [h_phone_rot_sym, ObservationKind.NO_ROT, None], | 
				
			||||
             [h_acc_sym, ObservationKind.PHONE_ACCEL, None], | 
				
			||||
             [h_pos_sym, ObservationKind.ECEF_POS, None], | 
				
			||||
             [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None], | 
				
			||||
             [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None], | 
				
			||||
             [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]] | 
				
			||||
 | 
				
			||||
  gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params) | 
				
			||||
					Loading…
					
					
				
		Reference in new issue