Rewrite modeld in python (#29230)
	
		
	
				
					
				
			* Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter errorpull/214/head
							parent
							
								
									c6c6877263
								
							
						
					
					
						commit
						72a3c987c0
					
				
				 10 changed files with 452 additions and 480 deletions
			
			
		@ -1,11 +1,7 @@ | 
				
			||||
#!/bin/sh | 
				
			||||
 | 
				
			||||
DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)" | 
				
			||||
cd $DIR | 
				
			||||
cd "$DIR/../../" | 
				
			||||
 | 
				
			||||
if [ -f /TICI ]; then | 
				
			||||
  export LD_LIBRARY_PATH="/usr/lib/aarch64-linux-gnu:/data/pythonpath/third_party/snpe/larch64:$LD_LIBRARY_PATH" | 
				
			||||
else | 
				
			||||
  export LD_LIBRARY_PATH="$DIR/../../third_party/snpe/x86_64-linux-clang:$DIR/../../openpilot/third_party/snpe/x86_64:$LD_LIBRARY_PATH" | 
				
			||||
fi | 
				
			||||
exec ./_modeld | 
				
			||||
export LD_PRELOAD="$DIR/libthneed.so" | 
				
			||||
exec "$DIR/modeld.py" | 
				
			||||
 | 
				
			||||
@ -1,271 +0,0 @@ | 
				
			||||
#include <cstdio> | 
				
			||||
#include <cstdlib> | 
				
			||||
#include <mutex> | 
				
			||||
#include <cmath> | 
				
			||||
 | 
				
			||||
#include <eigen3/Eigen/Dense> | 
				
			||||
 | 
				
			||||
#include "cereal/messaging/messaging.h" | 
				
			||||
#include "common/transformations/orientation.hpp" | 
				
			||||
 | 
				
			||||
#include "cereal/visionipc/visionipc_client.h" | 
				
			||||
#include "common/clutil.h" | 
				
			||||
#include "common/params.h" | 
				
			||||
#include "common/swaglog.h" | 
				
			||||
#include "common/util.h" | 
				
			||||
#include "system/hardware/hw.h" | 
				
			||||
#include "selfdrive/modeld/models/driving.h" | 
				
			||||
#include "selfdrive/modeld/models/nav.h" | 
				
			||||
 | 
				
			||||
 | 
				
			||||
ExitHandler do_exit; | 
				
			||||
 | 
				
			||||
mat3 update_calibration(Eigen::Vector3d device_from_calib_euler, bool wide_camera, bool bigmodel_frame) { | 
				
			||||
  /*
 | 
				
			||||
     import numpy as np | 
				
			||||
     from openpilot.common.transformations.model import medmodel_frame_from_calib_frame | 
				
			||||
     medmodel_frame_from_calib_frame = medmodel_frame_from_calib_frame[:, :3] | 
				
			||||
     calib_from_smedmodel_frame = np.linalg.inv(medmodel_frame_from_calib_frame) | 
				
			||||
  */ | 
				
			||||
  static const auto calib_from_medmodel = (Eigen::Matrix<float, 3, 3>() << | 
				
			||||
     0.00000000e+00, 0.00000000e+00, 1.00000000e+00, | 
				
			||||
     1.09890110e-03, 0.00000000e+00, -2.81318681e-01, | 
				
			||||
    -2.25466395e-20, 1.09890110e-03, -5.23076923e-02).finished(); | 
				
			||||
 | 
				
			||||
  static const auto calib_from_sbigmodel = (Eigen::Matrix<float, 3, 3>() << | 
				
			||||
     0.00000000e+00,  7.31372216e-19,  1.00000000e+00, | 
				
			||||
     2.19780220e-03,  4.11497335e-19, -5.62637363e-01, | 
				
			||||
    -6.66298828e-20,  2.19780220e-03, -3.33626374e-01).finished(); | 
				
			||||
 | 
				
			||||
  static const auto view_from_device = (Eigen::Matrix<float, 3, 3>() << | 
				
			||||
     0.0,  1.0,  0.0, | 
				
			||||
     0.0,  0.0,  1.0, | 
				
			||||
     1.0,  0.0,  0.0).finished(); | 
				
			||||
 | 
				
			||||
 | 
				
			||||
  const auto cam_intrinsics = Eigen::Matrix<float, 3, 3, Eigen::RowMajor>(wide_camera ? ECAM_INTRINSIC_MATRIX.v : FCAM_INTRINSIC_MATRIX.v); | 
				
			||||
  Eigen::Matrix<float, 3, 3, Eigen::RowMajor>  device_from_calib = euler2rot(device_from_calib_euler).cast <float> (); | 
				
			||||
  auto calib_from_model = bigmodel_frame ? calib_from_sbigmodel : calib_from_medmodel; | 
				
			||||
  auto camera_from_calib = cam_intrinsics * view_from_device * device_from_calib; | 
				
			||||
  auto warp_matrix = camera_from_calib * calib_from_model; | 
				
			||||
 | 
				
			||||
  mat3 transform = {}; | 
				
			||||
  for (int i=0; i<3*3; i++) { | 
				
			||||
    transform.v[i] = warp_matrix(i / 3, i % 3); | 
				
			||||
  } | 
				
			||||
  return transform; | 
				
			||||
} | 
				
			||||
 | 
				
			||||
 | 
				
			||||
void run_model(ModelState &model, VisionIpcClient &vipc_client_main, VisionIpcClient &vipc_client_extra, bool main_wide_camera, bool use_extra_client) { | 
				
			||||
  // messaging
 | 
				
			||||
  PubMaster pm({"modelV2", "cameraOdometry"}); | 
				
			||||
  SubMaster sm({"lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"}); | 
				
			||||
 | 
				
			||||
  Params params; | 
				
			||||
  PublishState ps = {}; | 
				
			||||
 | 
				
			||||
  // setup filter to track dropped frames
 | 
				
			||||
  FirstOrderFilter frame_dropped_filter(0., 10., 1. / MODEL_FREQ); | 
				
			||||
 | 
				
			||||
  uint32_t frame_id = 0, last_vipc_frame_id = 0; | 
				
			||||
  // double last = 0;
 | 
				
			||||
  uint32_t run_count = 0; | 
				
			||||
 | 
				
			||||
  mat3 model_transform_main = {}; | 
				
			||||
  mat3 model_transform_extra = {}; | 
				
			||||
  bool nav_enabled = false; | 
				
			||||
  bool live_calib_seen = false; | 
				
			||||
  float driving_style[DRIVING_STYLE_LEN] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}; | 
				
			||||
  float nav_features[NAV_FEATURE_LEN] = {0}; | 
				
			||||
  float nav_instructions[NAV_INSTRUCTION_LEN] = {0}; | 
				
			||||
 | 
				
			||||
  VisionBuf *buf_main = nullptr; | 
				
			||||
  VisionBuf *buf_extra = nullptr; | 
				
			||||
 | 
				
			||||
  VisionIpcBufExtra meta_main = {0}; | 
				
			||||
  VisionIpcBufExtra meta_extra = {0}; | 
				
			||||
 | 
				
			||||
  while (!do_exit) { | 
				
			||||
    // Keep receiving frames until we are at least 1 frame ahead of previous extra frame
 | 
				
			||||
    while (meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000ULL) { | 
				
			||||
      buf_main = vipc_client_main.recv(&meta_main); | 
				
			||||
      if (buf_main == nullptr)  break; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    if (buf_main == nullptr) { | 
				
			||||
      LOGE("vipc_client_main no frame"); | 
				
			||||
      continue; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    if (use_extra_client) { | 
				
			||||
      // Keep receiving extra frames until frame id matches main camera
 | 
				
			||||
      do { | 
				
			||||
        buf_extra = vipc_client_extra.recv(&meta_extra); | 
				
			||||
      } while (buf_extra != nullptr && meta_main.timestamp_sof > meta_extra.timestamp_sof + 25000000ULL); | 
				
			||||
 | 
				
			||||
      if (buf_extra == nullptr) { | 
				
			||||
        LOGE("vipc_client_extra no frame"); | 
				
			||||
        continue; | 
				
			||||
      } | 
				
			||||
 | 
				
			||||
      if (std::abs((int64_t)meta_main.timestamp_sof - (int64_t)meta_extra.timestamp_sof) > 10000000ULL) { | 
				
			||||
        LOGE("frames out of sync! main: %d (%.5f), extra: %d (%.5f)", | 
				
			||||
          meta_main.frame_id, double(meta_main.timestamp_sof) / 1e9, | 
				
			||||
          meta_extra.frame_id, double(meta_extra.timestamp_sof) / 1e9); | 
				
			||||
      } | 
				
			||||
    } else { | 
				
			||||
      // Use single camera
 | 
				
			||||
      buf_extra = buf_main; | 
				
			||||
      meta_extra = meta_main; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    // TODO: path planner timeout?
 | 
				
			||||
    sm.update(0); | 
				
			||||
    int desire = ((int)sm["lateralPlan"].getLateralPlan().getDesire()); | 
				
			||||
    bool is_rhd = ((bool)sm["driverMonitoringState"].getDriverMonitoringState().getIsRHD()); | 
				
			||||
    frame_id = sm["roadCameraState"].getRoadCameraState().getFrameId(); | 
				
			||||
    if (sm.updated("liveCalibration")) { | 
				
			||||
      auto rpy_calib = sm["liveCalibration"].getLiveCalibration().getRpyCalib(); | 
				
			||||
      Eigen::Vector3d device_from_calib_euler; | 
				
			||||
      for (int i=0; i<3; i++) { | 
				
			||||
        device_from_calib_euler(i) = rpy_calib[i]; | 
				
			||||
      } | 
				
			||||
      model_transform_main = update_calibration(device_from_calib_euler, main_wide_camera, false); | 
				
			||||
      model_transform_extra = update_calibration(device_from_calib_euler, true, true); | 
				
			||||
      live_calib_seen = true; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    float vec_desire[DESIRE_LEN] = {0}; | 
				
			||||
    if (desire >= 0 && desire < DESIRE_LEN) { | 
				
			||||
      vec_desire[desire] = 1.0; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    // Enable/disable nav features
 | 
				
			||||
    uint64_t timestamp_llk = sm["navModel"].getNavModel().getLocationMonoTime(); | 
				
			||||
    bool nav_valid = sm["navModel"].getValid() && (nanos_since_boot() - timestamp_llk < 1e9); | 
				
			||||
    bool use_nav = nav_valid && params.getBool("ExperimentalMode"); | 
				
			||||
    if (!nav_enabled && use_nav) { | 
				
			||||
      nav_enabled = true; | 
				
			||||
    } else if (nav_enabled && !use_nav) { | 
				
			||||
      memset(nav_features, 0, sizeof(float)*NAV_FEATURE_LEN); | 
				
			||||
      memset(nav_instructions, 0, sizeof(float)*NAV_INSTRUCTION_LEN); | 
				
			||||
      nav_enabled = false; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    if (nav_enabled && sm.updated("navModel")) { | 
				
			||||
      auto nav_model_features = sm["navModel"].getNavModel().getFeatures(); | 
				
			||||
      for (int i=0; i<NAV_FEATURE_LEN; i++) { | 
				
			||||
        nav_features[i] = nav_model_features[i]; | 
				
			||||
      } | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    if (nav_enabled && sm.updated("navInstruction")) { | 
				
			||||
      memset(nav_instructions, 0, sizeof(float)*NAV_INSTRUCTION_LEN); | 
				
			||||
      auto maneuvers = sm["navInstruction"].getNavInstruction().getAllManeuvers(); | 
				
			||||
      for (int i=0; i<maneuvers.size(); i++) { | 
				
			||||
        int distance_idx = 25 + (int)(maneuvers[i].getDistance() / 20); | 
				
			||||
        std::string direction = maneuvers[i].getModifier(); | 
				
			||||
        int direction_idx = 0; | 
				
			||||
        if (direction == "left" || direction == "slight left" || direction == "sharp left") direction_idx = 1; | 
				
			||||
        if (direction == "right" || direction == "slight right" || direction == "sharp right") direction_idx = 2; | 
				
			||||
        if (distance_idx >= 0 && distance_idx < 50) { | 
				
			||||
          nav_instructions[distance_idx*3 + direction_idx] = 1; | 
				
			||||
        } | 
				
			||||
      } | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    // tracked dropped frames
 | 
				
			||||
    uint32_t vipc_dropped_frames = meta_main.frame_id - last_vipc_frame_id - 1; | 
				
			||||
    float frames_dropped = frame_dropped_filter.update((float)std::min(vipc_dropped_frames, 10U)); | 
				
			||||
    if (run_count < 10) { // let frame drops warm up
 | 
				
			||||
      frame_dropped_filter.reset(0); | 
				
			||||
      frames_dropped = 0.; | 
				
			||||
    } | 
				
			||||
    run_count++; | 
				
			||||
 | 
				
			||||
    float frame_drop_ratio = frames_dropped / (1 + frames_dropped); | 
				
			||||
    bool prepare_only = vipc_dropped_frames > 0; | 
				
			||||
 | 
				
			||||
    if (prepare_only) { | 
				
			||||
      LOGE("skipping model eval. Dropped %d frames", vipc_dropped_frames); | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    double mt1 = millis_since_boot(); | 
				
			||||
    ModelOutput *model_output = model_eval_frame(&model, buf_main, buf_extra, model_transform_main, model_transform_extra, vec_desire, is_rhd, driving_style, nav_features, nav_instructions, prepare_only); | 
				
			||||
    double mt2 = millis_since_boot(); | 
				
			||||
    float model_execution_time = (mt2 - mt1) / 1000.0; | 
				
			||||
 | 
				
			||||
    if (model_output != nullptr) { | 
				
			||||
      model_publish(pm, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, *model_output, model, ps, meta_main.timestamp_eof, timestamp_llk, model_execution_time, | 
				
			||||
                    nav_enabled, live_calib_seen); | 
				
			||||
      posenet_publish(pm, meta_main.frame_id, vipc_dropped_frames, *model_output, meta_main.timestamp_eof, live_calib_seen); | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    // printf("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f\n", mt2 - mt1, mt1 - last, extra.frame_id, frame_id, frame_drop_ratio);
 | 
				
			||||
    // last = mt1;
 | 
				
			||||
    last_vipc_frame_id = meta_main.frame_id; | 
				
			||||
  } | 
				
			||||
} | 
				
			||||
 | 
				
			||||
int main(int argc, char **argv) { | 
				
			||||
  if (!Hardware::PC()) { | 
				
			||||
    int ret; | 
				
			||||
    ret = util::set_realtime_priority(54); | 
				
			||||
    assert(ret == 0); | 
				
			||||
    util::set_core_affinity({7}); | 
				
			||||
    assert(ret == 0); | 
				
			||||
  } | 
				
			||||
 | 
				
			||||
  // cl init
 | 
				
			||||
  cl_device_id device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT); | 
				
			||||
  cl_context context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err)); | 
				
			||||
 | 
				
			||||
  // init the models
 | 
				
			||||
  ModelState model; | 
				
			||||
  model_init(&model, device_id, context); | 
				
			||||
  LOGW("models loaded, modeld starting"); | 
				
			||||
 | 
				
			||||
  bool main_wide_camera = false; | 
				
			||||
  bool use_extra_client = true; // set to false to use single camera
 | 
				
			||||
  while (!do_exit) { | 
				
			||||
    auto streams = VisionIpcClient::getAvailableStreams("camerad", false); | 
				
			||||
    if (!streams.empty()) { | 
				
			||||
      use_extra_client = streams.count(VISION_STREAM_WIDE_ROAD) > 0 && streams.count(VISION_STREAM_ROAD) > 0; | 
				
			||||
      main_wide_camera = streams.count(VISION_STREAM_ROAD) == 0; | 
				
			||||
      break; | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    util::sleep_for(100); | 
				
			||||
  } | 
				
			||||
 | 
				
			||||
  VisionIpcClient vipc_client_main = VisionIpcClient("camerad", main_wide_camera ? VISION_STREAM_WIDE_ROAD : VISION_STREAM_ROAD, true, device_id, context); | 
				
			||||
  VisionIpcClient vipc_client_extra = VisionIpcClient("camerad", VISION_STREAM_WIDE_ROAD, false, device_id, context); | 
				
			||||
  LOGW("vision stream set up, main_wide_camera: %d, use_extra_client: %d", main_wide_camera, use_extra_client); | 
				
			||||
 | 
				
			||||
  while (!do_exit && !vipc_client_main.connect(false)) { | 
				
			||||
    util::sleep_for(100); | 
				
			||||
  } | 
				
			||||
 | 
				
			||||
  while (!do_exit && use_extra_client && !vipc_client_extra.connect(false)) { | 
				
			||||
    util::sleep_for(100); | 
				
			||||
  } | 
				
			||||
 | 
				
			||||
  // run the models
 | 
				
			||||
  // vipc_client.connected is false only when do_exit is true
 | 
				
			||||
  if (!do_exit) { | 
				
			||||
    const VisionBuf *b = &vipc_client_main.buffers[0]; | 
				
			||||
    LOGW("connected main cam with buffer size: %zu (%zu x %zu)", b->len, b->width, b->height); | 
				
			||||
 | 
				
			||||
    if (use_extra_client) { | 
				
			||||
      const VisionBuf *wb = &vipc_client_extra.buffers[0]; | 
				
			||||
      LOGW("connected extra cam with buffer size: %zu (%zu x %zu)", wb->len, wb->width, wb->height); | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    run_model(model, vipc_client_main, vipc_client_extra, main_wide_camera, use_extra_client); | 
				
			||||
  } | 
				
			||||
 | 
				
			||||
  model_free(&model); | 
				
			||||
  CL_CHECK(clReleaseContext(context)); | 
				
			||||
  return 0; | 
				
			||||
} | 
				
			||||
@ -0,0 +1,279 @@ | 
				
			||||
#!/usr/bin/env python3 | 
				
			||||
import sys | 
				
			||||
import time | 
				
			||||
import numpy as np | 
				
			||||
from pathlib import Path | 
				
			||||
from typing import Dict, Optional | 
				
			||||
from setproctitle import setproctitle | 
				
			||||
from cereal.messaging import PubMaster, SubMaster | 
				
			||||
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf | 
				
			||||
from openpilot.system.hardware import PC | 
				
			||||
from openpilot.system.swaglog import cloudlog | 
				
			||||
from openpilot.common.params import Params | 
				
			||||
from openpilot.common.filter_simple import FirstOrderFilter | 
				
			||||
from openpilot.common.realtime import config_realtime_process | 
				
			||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext, Runtime | 
				
			||||
from openpilot.selfdrive.modeld.models.driving_pyx import ( | 
				
			||||
  PublishState, create_model_msg, create_pose_msg, update_calibration, | 
				
			||||
  FEATURE_LEN, HISTORY_BUFFER_LEN, DESIRE_LEN, TRAFFIC_CONVENTION_LEN, NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN, | 
				
			||||
  OUTPUT_SIZE, NET_OUTPUT_SIZE, MODEL_FREQ, USE_THNEED) | 
				
			||||
 | 
				
			||||
if USE_THNEED: | 
				
			||||
  from selfdrive.modeld.runners.thneedmodel_pyx import ThneedModel as ModelRunner | 
				
			||||
else: | 
				
			||||
  from selfdrive.modeld.runners.onnxmodel_pyx import ONNXModel as ModelRunner | 
				
			||||
 | 
				
			||||
MODEL_PATH = str(Path(__file__).parent / f"models/supercombo.{'thneed' if USE_THNEED else 'onnx'}") | 
				
			||||
 | 
				
			||||
# NOTE: numpy matmuls don't seem to perfectly match eigen matmuls so the ref test fails, but we should switch to the np version after checking compare_runtime | 
				
			||||
# from common.transformations.orientation import rot_from_euler | 
				
			||||
# from common.transformations.model import medmodel_frame_from_calib_frame, sbigmodel_frame_from_calib_frame | 
				
			||||
# from common.transformations.camera import view_frame_from_device_frame, tici_fcam_intrinsics, tici_ecam_intrinsics | 
				
			||||
# calib_from_medmodel = np.linalg.inv(medmodel_frame_from_calib_frame[:, :3]) | 
				
			||||
# calib_from_sbigmodel = np.linalg.inv(sbigmodel_frame_from_calib_frame[:, :3]) | 
				
			||||
# | 
				
			||||
# def update_calibration(device_from_calib_euler: np.ndarray, wide_camera: bool, bigmodel_frame: bool) -> np.ndarray: | 
				
			||||
#   cam_intrinsics = tici_ecam_intrinsics if wide_camera else tici_fcam_intrinsics | 
				
			||||
#   calib_from_model = calib_from_sbigmodel if bigmodel_frame else calib_from_medmodel | 
				
			||||
#   device_from_calib = rot_from_euler(device_from_calib_euler) | 
				
			||||
#   camera_from_calib = cam_intrinsics @ view_frame_from_device_frame @ device_from_calib | 
				
			||||
#   warp_matrix: np.ndarray = camera_from_calib @ calib_from_model | 
				
			||||
#   return warp_matrix | 
				
			||||
 | 
				
			||||
class FrameMeta: | 
				
			||||
  frame_id: int = 0 | 
				
			||||
  timestamp_sof: int = 0 | 
				
			||||
  timestamp_eof: int = 0 | 
				
			||||
 | 
				
			||||
  def __init__(self, vipc=None): | 
				
			||||
    if vipc is not None: | 
				
			||||
      self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof | 
				
			||||
 | 
				
			||||
class ModelState: | 
				
			||||
  frame: ModelFrame | 
				
			||||
  wide_frame: ModelFrame | 
				
			||||
  inputs: Dict[str, np.ndarray] | 
				
			||||
  output: np.ndarray | 
				
			||||
  prev_desire: np.ndarray  # for tracking the rising edge of the pulse | 
				
			||||
  model: ModelRunner | 
				
			||||
 | 
				
			||||
  def __init__(self, context: CLContext): | 
				
			||||
    self.frame = ModelFrame(context) | 
				
			||||
    self.wide_frame = ModelFrame(context) | 
				
			||||
    self.prev_desire = np.zeros(DESIRE_LEN, dtype=np.float32) | 
				
			||||
    self.output = np.zeros(NET_OUTPUT_SIZE, dtype=np.float32) | 
				
			||||
    self.inputs = { | 
				
			||||
      'desire_pulse': np.zeros(DESIRE_LEN * (HISTORY_BUFFER_LEN+1), dtype=np.float32), | 
				
			||||
      'traffic_convention': np.zeros(TRAFFIC_CONVENTION_LEN, dtype=np.float32), | 
				
			||||
      'nav_features': np.zeros(NAV_FEATURE_LEN, dtype=np.float32), | 
				
			||||
      'nav_instructions': np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32), | 
				
			||||
      'feature_buffer': np.zeros(HISTORY_BUFFER_LEN * FEATURE_LEN, dtype=np.float32), | 
				
			||||
    } | 
				
			||||
 | 
				
			||||
    self.model = ModelRunner(MODEL_PATH, self.output, Runtime.GPU, False, context) | 
				
			||||
    self.model.addInput("input_imgs", None) | 
				
			||||
    self.model.addInput("big_input_imgs", None) | 
				
			||||
    for k,v in self.inputs.items(): | 
				
			||||
      self.model.addInput(k, v) | 
				
			||||
 | 
				
			||||
  def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray, | 
				
			||||
                inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[np.ndarray]: | 
				
			||||
    # Model decides when action is completed, so desire input is just a pulse triggered on rising edge | 
				
			||||
    inputs['desire_pulse'][0] = 0 | 
				
			||||
    self.inputs['desire_pulse'][:-DESIRE_LEN] = self.inputs['desire_pulse'][DESIRE_LEN:] | 
				
			||||
    self.inputs['desire_pulse'][-DESIRE_LEN:] = np.where(inputs['desire_pulse'] - self.prev_desire > .99, inputs['desire_pulse'], 0) | 
				
			||||
    self.prev_desire[:] = inputs['desire_pulse'] | 
				
			||||
 | 
				
			||||
    self.inputs['traffic_convention'][:] = inputs['traffic_convention'] | 
				
			||||
    self.inputs['nav_features'][:] = inputs['nav_features'] | 
				
			||||
    self.inputs['nav_instructions'][:] = inputs['nav_instructions'] | 
				
			||||
    # self.inputs['driving_style'][:] = inputs['driving_style'] | 
				
			||||
 | 
				
			||||
    # if getCLBuffer is not None, frame will be None | 
				
			||||
    self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs"))) | 
				
			||||
    if wbuf is not None: | 
				
			||||
      self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs"))) | 
				
			||||
 | 
				
			||||
    if prepare_only: | 
				
			||||
      return None | 
				
			||||
 | 
				
			||||
    self.model.execute() | 
				
			||||
    self.inputs['feature_buffer'][:-FEATURE_LEN] = self.inputs['feature_buffer'][FEATURE_LEN:] | 
				
			||||
    self.inputs['feature_buffer'][-FEATURE_LEN:] = self.output[OUTPUT_SIZE:OUTPUT_SIZE+FEATURE_LEN] | 
				
			||||
    return self.output | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def main(): | 
				
			||||
  cloudlog.bind(daemon="selfdrive.modeld.modeld") | 
				
			||||
  setproctitle("selfdrive.modeld.modeld") | 
				
			||||
  if not PC: | 
				
			||||
    config_realtime_process(7, 54) | 
				
			||||
 | 
				
			||||
  cl_context = CLContext() | 
				
			||||
  model = ModelState(cl_context) | 
				
			||||
  cloudlog.warning("models loaded, modeld starting") | 
				
			||||
 | 
				
			||||
  # visionipc clients | 
				
			||||
  while True: | 
				
			||||
    available_streams = VisionIpcClient.available_streams("camerad", block=False) | 
				
			||||
    if available_streams: | 
				
			||||
      use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams | 
				
			||||
      main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams | 
				
			||||
      break | 
				
			||||
    time.sleep(.1) | 
				
			||||
 | 
				
			||||
  vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD | 
				
			||||
  vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context) | 
				
			||||
  vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context) | 
				
			||||
  cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}") | 
				
			||||
 | 
				
			||||
  while not vipc_client_main.connect(False): | 
				
			||||
    time.sleep(0.1) | 
				
			||||
  while not vipc_client_extra.connect(False): | 
				
			||||
    time.sleep(0.1) | 
				
			||||
 | 
				
			||||
  cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})") | 
				
			||||
  if use_extra_client: | 
				
			||||
    cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})") | 
				
			||||
 | 
				
			||||
  # messaging | 
				
			||||
  pm = PubMaster(["modelV2", "cameraOdometry"]) | 
				
			||||
  sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"]) | 
				
			||||
 | 
				
			||||
  state = PublishState() | 
				
			||||
  params = Params() | 
				
			||||
 | 
				
			||||
  # setup filter to track dropped frames | 
				
			||||
  frame_dropped_filter = FirstOrderFilter(0., 10., 1. / MODEL_FREQ) | 
				
			||||
  frame_id = 0 | 
				
			||||
  last_vipc_frame_id = 0 | 
				
			||||
  run_count = 0 | 
				
			||||
  # last = 0.0 | 
				
			||||
 | 
				
			||||
  model_transform_main = np.zeros((3, 3), dtype=np.float32) | 
				
			||||
  model_transform_extra = np.zeros((3, 3), dtype=np.float32) | 
				
			||||
  live_calib_seen = False | 
				
			||||
  driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32) | 
				
			||||
  nav_features = np.zeros(NAV_FEATURE_LEN, dtype=np.float32) | 
				
			||||
  nav_instructions = np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32) | 
				
			||||
  buf_main, buf_extra = None, None | 
				
			||||
  meta_main = FrameMeta() | 
				
			||||
  meta_extra = FrameMeta() | 
				
			||||
 | 
				
			||||
  while True: | 
				
			||||
    # Keep receiving frames until we are at least 1 frame ahead of previous extra frame | 
				
			||||
    while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: | 
				
			||||
      buf_main = vipc_client_main.recv() | 
				
			||||
      meta_main = FrameMeta(vipc_client_main) | 
				
			||||
      if buf_main is None: | 
				
			||||
        break | 
				
			||||
 | 
				
			||||
    if buf_main is None: | 
				
			||||
      cloudlog.error("vipc_client_main no frame") | 
				
			||||
      continue | 
				
			||||
 | 
				
			||||
    if use_extra_client: | 
				
			||||
      # Keep receiving extra frames until frame id matches main camera | 
				
			||||
      while True: | 
				
			||||
        buf_extra = vipc_client_extra.recv() | 
				
			||||
        meta_extra = FrameMeta(vipc_client_extra) | 
				
			||||
        if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: | 
				
			||||
          break | 
				
			||||
 | 
				
			||||
      if buf_extra is None: | 
				
			||||
        cloudlog.error("vipc_client_extra no frame") | 
				
			||||
        continue | 
				
			||||
 | 
				
			||||
      if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000: | 
				
			||||
        cloudlog.error("frames out of sync! main: {} ({:.5f}), extra: {} ({:.5f})".format( | 
				
			||||
          meta_main.frame_id, meta_main.timestamp_sof / 1e9, | 
				
			||||
          meta_extra.frame_id, meta_extra.timestamp_sof / 1e9)) | 
				
			||||
 | 
				
			||||
    else: | 
				
			||||
      # Use single camera | 
				
			||||
      buf_extra = buf_main | 
				
			||||
      meta_extra = meta_main | 
				
			||||
 | 
				
			||||
    # TODO: path planner timeout? | 
				
			||||
    sm.update(0) | 
				
			||||
    desire = sm["lateralPlan"].desire.raw | 
				
			||||
    is_rhd = sm["driverMonitoringState"].isRHD | 
				
			||||
    frame_id = sm["roadCameraState"].frameId | 
				
			||||
    if sm.updated["liveCalibration"]: | 
				
			||||
      device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32) | 
				
			||||
      model_transform_main = update_calibration(device_from_calib_euler, main_wide_camera, False) | 
				
			||||
      model_transform_extra = update_calibration(device_from_calib_euler, True, True) | 
				
			||||
      live_calib_seen = True | 
				
			||||
 | 
				
			||||
    traffic_convention = np.zeros(2) | 
				
			||||
    traffic_convention[int(is_rhd)] = 1 | 
				
			||||
 | 
				
			||||
    vec_desire = np.zeros(DESIRE_LEN, dtype=np.float32) | 
				
			||||
    if desire >= 0 and desire < DESIRE_LEN: | 
				
			||||
      vec_desire[desire] = 1 | 
				
			||||
 | 
				
			||||
    # Enable/disable nav features | 
				
			||||
    timestamp_llk = sm["navModel"].locationMonoTime | 
				
			||||
    nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9) | 
				
			||||
    nav_enabled = nav_valid and params.get_bool("ExperimentalMode") | 
				
			||||
 | 
				
			||||
    if not nav_enabled: | 
				
			||||
      nav_features[:] = 0 | 
				
			||||
      nav_instructions[:] = 0 | 
				
			||||
 | 
				
			||||
    if nav_enabled and sm.updated["navModel"]: | 
				
			||||
      nav_features = np.array(sm["navModel"].features) | 
				
			||||
 | 
				
			||||
    if nav_enabled and sm.updated["navInstruction"]: | 
				
			||||
      nav_instructions[:] = 0 | 
				
			||||
      for maneuver in sm["navInstruction"].allManeuvers: | 
				
			||||
        distance_idx = 25 + int(maneuver.distance / 20) | 
				
			||||
        direction_idx = 0 | 
				
			||||
        if maneuver.modifier in ("left", "slight left", "sharp left"): | 
				
			||||
          direction_idx = 1 | 
				
			||||
        if maneuver.modifier in ("right", "slight right", "sharp right"): | 
				
			||||
          direction_idx = 2 | 
				
			||||
        if 0 <= distance_idx < 50: | 
				
			||||
          nav_instructions[distance_idx*3 + direction_idx] = 1 | 
				
			||||
 | 
				
			||||
    # tracked dropped frames | 
				
			||||
    vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1) | 
				
			||||
    frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10)) | 
				
			||||
    if run_count < 10: # let frame drops warm up | 
				
			||||
      frame_dropped_filter.x = 0. | 
				
			||||
      frames_dropped = 0. | 
				
			||||
    run_count = run_count + 1 | 
				
			||||
 | 
				
			||||
    frame_drop_ratio = frames_dropped / (1 + frames_dropped) | 
				
			||||
    prepare_only = vipc_dropped_frames > 0 | 
				
			||||
    if prepare_only: | 
				
			||||
      cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames") | 
				
			||||
 | 
				
			||||
    inputs:Dict[str, np.ndarray] = { | 
				
			||||
      'desire_pulse': vec_desire, | 
				
			||||
      'traffic_convention': traffic_convention, | 
				
			||||
      'driving_style': driving_style, | 
				
			||||
      'nav_features': nav_features, | 
				
			||||
      'nav_instructions': nav_instructions} | 
				
			||||
 | 
				
			||||
    mt1 = time.perf_counter() | 
				
			||||
    model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only) | 
				
			||||
    mt2 = time.perf_counter() | 
				
			||||
    model_execution_time = mt2 - mt1 | 
				
			||||
 | 
				
			||||
    if model_output is not None: | 
				
			||||
      pm.send("modelV2", create_model_msg(model_output, state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, | 
				
			||||
                                          meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)) | 
				
			||||
      pm.send("cameraOdometry", create_pose_msg(model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)) | 
				
			||||
 | 
				
			||||
    # print("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f" % | 
				
			||||
    #   ((mt2 - mt1)*1000, (mt1 - last)*1000, meta_extra.frame_id, frame_id, frame_drop_ratio)) | 
				
			||||
    # last = mt1 | 
				
			||||
    last_vipc_frame_id = meta_main.frame_id | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__": | 
				
			||||
  try: | 
				
			||||
    main() | 
				
			||||
  except KeyboardInterrupt: | 
				
			||||
    sys.exit() | 
				
			||||
@ -0,0 +1,29 @@ | 
				
			||||
# distutils: language = c++ | 
				
			||||
 | 
				
			||||
from libcpp cimport bool | 
				
			||||
from libc.stdint cimport uint32_t, uint64_t | 
				
			||||
 | 
				
			||||
from .commonmodel cimport mat3 | 
				
			||||
 | 
				
			||||
cdef extern from "cereal/messaging/messaging.h": | 
				
			||||
  cdef cppclass MessageBuilder: | 
				
			||||
    size_t getSerializedSize() | 
				
			||||
    int serializeToBuffer(unsigned char *, size_t) | 
				
			||||
 | 
				
			||||
cdef extern from "selfdrive/modeld/models/driving.h": | 
				
			||||
  cdef int FEATURE_LEN | 
				
			||||
  cdef int HISTORY_BUFFER_LEN | 
				
			||||
  cdef int DESIRE_LEN | 
				
			||||
  cdef int TRAFFIC_CONVENTION_LEN | 
				
			||||
  cdef int DRIVING_STYLE_LEN | 
				
			||||
  cdef int NAV_FEATURE_LEN | 
				
			||||
  cdef int NAV_INSTRUCTION_LEN | 
				
			||||
  cdef int OUTPUT_SIZE | 
				
			||||
  cdef int NET_OUTPUT_SIZE | 
				
			||||
  cdef int MODEL_FREQ | 
				
			||||
  cdef bool CPP_USE_THNEED | 
				
			||||
  cdef struct PublishState: pass | 
				
			||||
 | 
				
			||||
  mat3 update_calibration(float *, bool, bool) | 
				
			||||
  void fill_model_msg(MessageBuilder, float *, PublishState, uint32_t, uint32_t, uint32_t, float, uint64_t, uint64_t, float, bool, bool) | 
				
			||||
  void fill_pose_msg(MessageBuilder, float *, uint32_t, uint32_t, uint64_t, bool) | 
				
			||||
@ -0,0 +1,60 @@ | 
				
			||||
# distutils: language = c++ | 
				
			||||
# cython: c_string_encoding=ascii | 
				
			||||
 | 
				
			||||
import numpy as np | 
				
			||||
cimport numpy as cnp | 
				
			||||
from libcpp cimport bool | 
				
			||||
from libc.string cimport memcpy | 
				
			||||
from libc.stdint cimport uint32_t, uint64_t | 
				
			||||
 | 
				
			||||
from .commonmodel cimport mat3 | 
				
			||||
from .driving cimport FEATURE_LEN as CPP_FEATURE_LEN, HISTORY_BUFFER_LEN as CPP_HISTORY_BUFFER_LEN, DESIRE_LEN as CPP_DESIRE_LEN, \ | 
				
			||||
                      TRAFFIC_CONVENTION_LEN as CPP_TRAFFIC_CONVENTION_LEN, DRIVING_STYLE_LEN as CPP_DRIVING_STYLE_LEN, \ | 
				
			||||
                      NAV_FEATURE_LEN as CPP_NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN as CPP_NAV_INSTRUCTION_LEN, \ | 
				
			||||
                      OUTPUT_SIZE as CPP_OUTPUT_SIZE, NET_OUTPUT_SIZE as CPP_NET_OUTPUT_SIZE, MODEL_FREQ as CPP_MODEL_FREQ, CPP_USE_THNEED | 
				
			||||
from .driving cimport MessageBuilder, PublishState as cppPublishState | 
				
			||||
from .driving cimport fill_model_msg, fill_pose_msg, update_calibration as cpp_update_calibration | 
				
			||||
 | 
				
			||||
FEATURE_LEN = CPP_FEATURE_LEN | 
				
			||||
HISTORY_BUFFER_LEN = CPP_HISTORY_BUFFER_LEN | 
				
			||||
DESIRE_LEN = CPP_DESIRE_LEN | 
				
			||||
TRAFFIC_CONVENTION_LEN = CPP_TRAFFIC_CONVENTION_LEN | 
				
			||||
DRIVING_STYLE_LEN = CPP_DRIVING_STYLE_LEN | 
				
			||||
NAV_FEATURE_LEN = CPP_NAV_FEATURE_LEN | 
				
			||||
NAV_INSTRUCTION_LEN = CPP_NAV_INSTRUCTION_LEN | 
				
			||||
OUTPUT_SIZE = CPP_OUTPUT_SIZE | 
				
			||||
NET_OUTPUT_SIZE = CPP_NET_OUTPUT_SIZE | 
				
			||||
MODEL_FREQ = CPP_MODEL_FREQ | 
				
			||||
USE_THNEED = CPP_USE_THNEED | 
				
			||||
 | 
				
			||||
cdef class PublishState: | 
				
			||||
  cdef cppPublishState state | 
				
			||||
 | 
				
			||||
def update_calibration(float[:] device_from_calib_euler, bool wide_camera, bool bigmodel_frame): | 
				
			||||
  cdef mat3 result = cpp_update_calibration(&device_from_calib_euler[0], wide_camera, bigmodel_frame) | 
				
			||||
  np_result = np.empty(9, dtype=np.float32) | 
				
			||||
  cdef float[:] np_result_view = np_result | 
				
			||||
  memcpy(&np_result_view[0], &result.v[0], 9*sizeof(float)) | 
				
			||||
  return np_result.reshape(3, 3) | 
				
			||||
 | 
				
			||||
def create_model_msg(float[:] model_outputs, PublishState ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop, | 
				
			||||
                     uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, bool nav_enabled, bool valid): | 
				
			||||
  cdef MessageBuilder msg | 
				
			||||
  fill_model_msg(msg, &model_outputs[0], ps.state, vipc_frame_id, vipc_frame_id_extra, frame_id, frame_drop, | 
				
			||||
                 timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, valid) | 
				
			||||
 | 
				
			||||
  output_size = msg.getSerializedSize() | 
				
			||||
  output_data = bytearray(output_size) | 
				
			||||
  cdef unsigned char * output_ptr = output_data | 
				
			||||
  assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize" | 
				
			||||
  return bytes(output_data) | 
				
			||||
 | 
				
			||||
def create_pose_msg(float[:] model_outputs, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, bool valid): | 
				
			||||
  cdef MessageBuilder msg | 
				
			||||
  fill_pose_msg(msg, &model_outputs[0], vipc_frame_id, vipc_dropped_frames, timestamp_eof, valid) | 
				
			||||
 | 
				
			||||
  output_size = msg.getSerializedSize() | 
				
			||||
  output_data = bytearray(output_size) | 
				
			||||
  cdef unsigned char * output_ptr = output_data | 
				
			||||
  assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize" | 
				
			||||
  return bytes(output_data) | 
				
			||||
					Loading…
					
					
				
		Reference in new issue