no heading cost (#20594)
* no heading cost * live mpc weight config * need to add stds * make work on empty data * no divide by 0 * update refs * update model replay * update proc replat * new model replay refpull/214/head
parent
399ac30250
commit
d72d433ec7
10 changed files with 39 additions and 220 deletions
@ -1,187 +0,0 @@ |
|||||||
#! /usr/bin/env python |
|
||||||
# type: ignore |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
from collections import OrderedDict |
|
||||||
import matplotlib.pyplot as plt |
|
||||||
from selfdrive.car.honda.interface import CarInterface |
|
||||||
from selfdrive.controls.lib.lateral_mpc import libmpc_py |
|
||||||
from selfdrive.controls.lib.vehicle_model import VehicleModel |
|
||||||
|
|
||||||
# plot lateral MPC trajectory by defining boundary conditions: |
|
||||||
# lane lines, p_poly and vehicle states. Use this script to tune MPC costs |
|
||||||
|
|
||||||
libmpc = libmpc_py.libmpc |
|
||||||
|
|
||||||
mpc_solution = libmpc_py.ffi.new("log_t *") |
|
||||||
|
|
||||||
points_l = np.array([1.1049711, 1.1053879, 1.1073375, 1.1096942, 1.1124474, 1.1154714, 1.1192677, 1.1245866, 1.1321017, 1.1396152, 1.146443, 1.1555313, 1.1662073, 1.1774249, 1.1888939, 1.2009926, 1.2149779, 1.2300836, 1.2450289, 1.2617753, 1.2785473, 1.2974714, 1.3151019, 1.3331807, 1.3545501, 1.3763691, 1.3983455, 1.4215056, 1.4446729, 1.4691089, 1.4927692, 1.5175346, 1.5429921, 1.568854, 1.5968665, 1.6268958, 1.657122, 1.6853137, 1.7152609, 1.7477539, 1.7793678, 1.8098511, 1.8428392, 1.8746407, 1.9089606, 1.9426043, 1.9775689, 2.0136933, 2.0520134, 2.0891454]) |
|
||||||
|
|
||||||
points_r = np.array([-2.4442139, -2.4449506, -2.4448867, -2.44377, -2.4422617, -2.4393811, -2.4374201, -2.4334245, -2.4286852, -2.4238286, -2.4177458, -2.4094386, -2.3994849, -2.3904033, -2.380136, -2.3699453, -2.3594661, -2.3474073, -2.3342307, -2.3194637, -2.3046403, -2.2881098, -2.2706163, -2.2530098, -2.235604, -2.2160542, -2.1967411, -2.1758952, -2.1544619, -2.1325269, -2.1091819, -2.0850561, -2.0621953, -2.0364127, -2.0119917, -1.9851667, -1.9590458, -1.9306552, -1.9024918, -1.8745357, -1.8432863, -1.8131843, -1.7822732, -1.7507075, -1.7180918, -1.6845931, -1.650871, -1.6157099, -1.5787286, -1.5418037]) |
|
||||||
|
|
||||||
|
|
||||||
points_c = (points_l + points_r) / 2.0 |
|
||||||
|
|
||||||
def compute_path_pinv(): |
|
||||||
deg = 3 |
|
||||||
x = np.arange(50.0) |
|
||||||
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T |
|
||||||
pinv = np.linalg.pinv(X) |
|
||||||
return pinv |
|
||||||
|
|
||||||
|
|
||||||
def model_polyfit(points): |
|
||||||
path_pinv = compute_path_pinv() |
|
||||||
return np.dot(path_pinv, map(float, points)) |
|
||||||
|
|
||||||
|
|
||||||
xx = [] |
|
||||||
yy = [] |
|
||||||
deltas = [] |
|
||||||
psis = [] |
|
||||||
times = [] |
|
||||||
|
|
||||||
CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING") |
|
||||||
VM = VehicleModel(CP) |
|
||||||
|
|
||||||
v_ref = 32.00 # 45 mph |
|
||||||
curvature_factor = VM.curvature_factor(v_ref) |
|
||||||
print(curvature_factor) |
|
||||||
|
|
||||||
LANE_WIDTH = 3.9 |
|
||||||
p_l = map(float, model_polyfit(points_l)) |
|
||||||
p_r = map(float, model_polyfit(points_r)) |
|
||||||
p_p = map(float, model_polyfit(points_c)) |
|
||||||
|
|
||||||
l_poly = libmpc_py.ffi.new("double[4]", p_l) |
|
||||||
r_poly = libmpc_py.ffi.new("double[4]", p_r) |
|
||||||
p_poly = libmpc_py.ffi.new("double[4]", p_p) |
|
||||||
l_prob = 1.0 |
|
||||||
r_prob = 1.0 |
|
||||||
p_prob = 1.0 # This is always 1 |
|
||||||
|
|
||||||
|
|
||||||
mpc_x_points = np.linspace(0., 2.5*v_ref, num=50) |
|
||||||
points_poly_l = np.polyval(p_l, mpc_x_points) |
|
||||||
points_poly_r = np.polyval(p_r, mpc_x_points) |
|
||||||
points_poly_p = np.polyval(p_p, mpc_x_points) |
|
||||||
print(points_poly_l) |
|
||||||
|
|
||||||
lanes_x = np.linspace(0, 49) |
|
||||||
|
|
||||||
cur_state = libmpc_py.ffi.new("state_t *") |
|
||||||
cur_state[0].x = 0.0 |
|
||||||
cur_state[0].y = 0.5 |
|
||||||
cur_state[0].psi = 0.0 |
|
||||||
cur_state[0].delta = 0.0 |
|
||||||
|
|
||||||
xs = [] |
|
||||||
ys = [] |
|
||||||
deltas = [] |
|
||||||
titles = [ |
|
||||||
'Steer rate cost', |
|
||||||
'Heading cost', |
|
||||||
'Lane cost', |
|
||||||
'Path cost', |
|
||||||
] |
|
||||||
|
|
||||||
# Steer rate cost |
|
||||||
sol_x = OrderedDict() |
|
||||||
sol_y = OrderedDict() |
|
||||||
delta = OrderedDict() |
|
||||||
for cost in np.logspace(-1, 1.0, 5): |
|
||||||
libmpc.init(1.0, 3.0, 1.0, cost) |
|
||||||
for _ in range(10): |
|
||||||
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob, |
|
||||||
curvature_factor, v_ref, LANE_WIDTH) |
|
||||||
sol_x[cost] = map(float, list(mpc_solution[0].x)) |
|
||||||
sol_y[cost] = map(float, list(mpc_solution[0].y)) |
|
||||||
delta[cost] = map(float, list(mpc_solution[0].delta)) |
|
||||||
xs.append(sol_x) |
|
||||||
ys.append(sol_y) |
|
||||||
deltas.append(delta) |
|
||||||
|
|
||||||
# Heading cost |
|
||||||
sol_x = OrderedDict() |
|
||||||
sol_y = OrderedDict() |
|
||||||
delta = OrderedDict() |
|
||||||
for cost in np.logspace(-1, 1.0, 5): |
|
||||||
libmpc.init(1.0, 3.0, cost, 1.0) |
|
||||||
for _ in range(10): |
|
||||||
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob, |
|
||||||
curvature_factor, v_ref, LANE_WIDTH) |
|
||||||
sol_x[cost] = map(float, list(mpc_solution[0].x)) |
|
||||||
sol_y[cost] = map(float, list(mpc_solution[0].y)) |
|
||||||
delta[cost] = map(float, list(mpc_solution[0].delta)) |
|
||||||
xs.append(sol_x) |
|
||||||
ys.append(sol_y) |
|
||||||
deltas.append(delta) |
|
||||||
|
|
||||||
# Lane cost |
|
||||||
sol_x = OrderedDict() |
|
||||||
sol_y = OrderedDict() |
|
||||||
delta = OrderedDict() |
|
||||||
for cost in np.logspace(-1, 2.0, 5): |
|
||||||
libmpc.init(1.0, cost, 1.0, 1.0) |
|
||||||
for _ in range(10): |
|
||||||
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob, |
|
||||||
curvature_factor, v_ref, LANE_WIDTH) |
|
||||||
sol_x[cost] = map(float, list(mpc_solution[0].x)) |
|
||||||
sol_y[cost] = map(float, list(mpc_solution[0].y)) |
|
||||||
delta[cost] = map(float, list(mpc_solution[0].delta)) |
|
||||||
xs.append(sol_x) |
|
||||||
ys.append(sol_y) |
|
||||||
deltas.append(delta) |
|
||||||
|
|
||||||
|
|
||||||
# Path cost |
|
||||||
sol_x = OrderedDict() |
|
||||||
sol_y = OrderedDict() |
|
||||||
delta = OrderedDict() |
|
||||||
for cost in np.logspace(-1, 1.0, 5): |
|
||||||
libmpc.init(cost, 3.0, 1.0, 1.0) |
|
||||||
for _ in range(10): |
|
||||||
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob, |
|
||||||
curvature_factor, v_ref, LANE_WIDTH) |
|
||||||
sol_x[cost] = map(float, list(mpc_solution[0].x)) |
|
||||||
sol_y[cost] = map(float, list(mpc_solution[0].y)) |
|
||||||
delta[cost] = map(float, list(mpc_solution[0].delta)) |
|
||||||
xs.append(sol_x) |
|
||||||
ys.append(sol_y) |
|
||||||
deltas.append(delta) |
|
||||||
|
|
||||||
|
|
||||||
plt.figure() |
|
||||||
|
|
||||||
for i in range(len(xs)): |
|
||||||
ax = plt.subplot(2, 2, i + 1) |
|
||||||
sol_x = xs[i] |
|
||||||
sol_y = ys[i] |
|
||||||
for cost in sol_x.keys(): |
|
||||||
plt.plot(sol_x[cost], sol_y[cost]) |
|
||||||
|
|
||||||
plt.plot(lanes_x, points_r, '.b') |
|
||||||
plt.plot(lanes_x, points_l, '.b') |
|
||||||
plt.plot(lanes_x, (points_l + points_r) / 2.0, '--g') |
|
||||||
plt.plot(mpc_x_points, points_poly_l, 'b') |
|
||||||
plt.plot(mpc_x_points, points_poly_r, 'b') |
|
||||||
plt.plot(mpc_x_points, (points_poly_l + points_poly_r) / 2.0, 'g') |
|
||||||
plt.legend(map(lambda x: str(round(x, 2)), sol_x.keys()) + ['right', 'left', 'center'], loc=3) |
|
||||||
plt.title(titles[i]) |
|
||||||
plt.grid(True) |
|
||||||
# ax.set_aspect('equal', 'datalim') |
|
||||||
|
|
||||||
|
|
||||||
plt.figure() |
|
||||||
for i in range(len(xs)): |
|
||||||
plt.subplot(2, 2, i + 1) |
|
||||||
sol_x = xs[i] |
|
||||||
delta = deltas[i] |
|
||||||
|
|
||||||
for cost in sol_x.keys(): |
|
||||||
plt.plot(delta[cost]) |
|
||||||
plt.title(titles[i]) |
|
||||||
plt.legend(map(lambda x: str(round(x, 2)), sol_x.keys()), loc=3) |
|
||||||
plt.grid(True) |
|
||||||
|
|
||||||
plt.show() |
|
@ -1 +1 @@ |
|||||||
6829c5c76f3527af06e1c2b685f98a5e1bbef00a |
1d17a97b34258507720b39cdf059a3c769aaf998 |
||||||
|
@ -1 +1 @@ |
|||||||
6c2409d2b1a93b675e4cd4ae7e67fc56ec3824dc |
15390f9a445a1fd775079d1938ed14b0d6afacc9 |
||||||
|
@ -1 +1 @@ |
|||||||
724ca5ef28a601d5c78e63fb59890c6c93bd07d7 |
305c7a50812c20094998975b2966a7a5ad768e96 |
Loading…
Reference in new issue