Lateral torque-based control with roll on TSS2 corolla and TSSP rav4 (#24260)
	
		
	
				
					
				
			* Initial commit * Fix bugs * Need more torque rate * Cleanup cray cray control * Write nicely * Chiiil * Not relevant for cray cray control * Do some logging * Seems like it has more torque than I thought * Bit more feedforward * Tune change * Retune * Retune * Little more chill * Add coroll * Add corolla * Give craycray a good name * Update to proper logging * D to the PI * Should be in radians * Add d * Start oscillations * Add D term * Only change torque rate limits for new tune * Add d logging * Should be enough * Wrong sign in D * Downtune a little * Needed to prevent faults * Add lqr rav4 to tune * Try derivative again * Data based retune * Data based retune * add friction compensation * Doesnt need too much P with friction comp * remove lqr * Remove kd * Fix tests * fix tests * Too much error * Get roll induced error under 1cm/deg * Too much jitter * Do roll comp * Add ki * Final update * Update refs * Cleanup latcontrol_torque a little morepull/214/head
							parent
							
								
									6877059b45
								
							
						
					
					
						commit
						fe0bcdaef6
					
				
				 16 changed files with 120 additions and 123 deletions
			
			
		| @ -1,84 +0,0 @@ | |||||||
| import math |  | ||||||
| import numpy as np |  | ||||||
| 
 |  | ||||||
| from common.numpy_fast import clip |  | ||||||
| from common.realtime import DT_CTRL |  | ||||||
| from cereal import log |  | ||||||
| from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| class LatControlLQR(LatControl): |  | ||||||
|   def __init__(self, CP, CI): |  | ||||||
|     super().__init__(CP, CI) |  | ||||||
|     self.scale = CP.lateralTuning.lqr.scale |  | ||||||
|     self.ki = CP.lateralTuning.lqr.ki |  | ||||||
| 
 |  | ||||||
|     self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2)) |  | ||||||
|     self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1)) |  | ||||||
|     self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2)) |  | ||||||
|     self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2)) |  | ||||||
|     self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1)) |  | ||||||
|     self.dc_gain = CP.lateralTuning.lqr.dcGain |  | ||||||
| 
 |  | ||||||
|     self.x_hat = np.array([[0], [0]]) |  | ||||||
|     self.i_unwind_rate = 0.3 * DT_CTRL |  | ||||||
|     self.i_rate = 1.0 * DT_CTRL |  | ||||||
| 
 |  | ||||||
|     self.reset() |  | ||||||
| 
 |  | ||||||
|   def reset(self): |  | ||||||
|     super().reset() |  | ||||||
|     self.i_lqr = 0.0 |  | ||||||
| 
 |  | ||||||
|   def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): |  | ||||||
|     lqr_log = log.ControlsState.LateralLQRState.new_message() |  | ||||||
| 
 |  | ||||||
|     torque_scale = (0.45 + CS.vEgo / 60.0)**2  # Scale actuator model with speed |  | ||||||
| 
 |  | ||||||
|     # Subtract offset. Zero angle should correspond to zero torque |  | ||||||
|     steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg |  | ||||||
| 
 |  | ||||||
|     desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) |  | ||||||
| 
 |  | ||||||
|     instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg |  | ||||||
|     desired_angle += instant_offset  # Only add offset that originates from vehicle model errors |  | ||||||
|     lqr_log.steeringAngleDesiredDeg = desired_angle |  | ||||||
| 
 |  | ||||||
|     # Update Kalman filter |  | ||||||
|     angle_steers_k = float(self.C.dot(self.x_hat)) |  | ||||||
|     e = steering_angle_no_offset - angle_steers_k |  | ||||||
|     self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e) |  | ||||||
| 
 |  | ||||||
|     if CS.vEgo < MIN_STEER_SPEED or not active: |  | ||||||
|       lqr_log.active = False |  | ||||||
|       lqr_output = 0. |  | ||||||
|       output_steer = 0. |  | ||||||
|       self.reset() |  | ||||||
|     else: |  | ||||||
|       lqr_log.active = True |  | ||||||
| 
 |  | ||||||
|       # LQR |  | ||||||
|       u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat)) |  | ||||||
|       lqr_output = torque_scale * u_lqr / self.scale |  | ||||||
| 
 |  | ||||||
|       # Integrator |  | ||||||
|       if CS.steeringPressed: |  | ||||||
|         self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr)) |  | ||||||
|       else: |  | ||||||
|         error = desired_angle - angle_steers_k |  | ||||||
|         i = self.i_lqr + self.ki * self.i_rate * error |  | ||||||
|         control = lqr_output + i |  | ||||||
| 
 |  | ||||||
|         if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \ |  | ||||||
|            (error <= 0 and (control >= -self.steer_max or i > 0.0)): |  | ||||||
|           self.i_lqr = i |  | ||||||
| 
 |  | ||||||
|       output_steer = lqr_output + self.i_lqr |  | ||||||
|       output_steer = clip(output_steer, -self.steer_max, self.steer_max) |  | ||||||
| 
 |  | ||||||
|     lqr_log.steeringAngleDeg = angle_steers_k |  | ||||||
|     lqr_log.i = self.i_lqr |  | ||||||
|     lqr_log.output = output_steer |  | ||||||
|     lqr_log.lqrOutput = lqr_output |  | ||||||
|     lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS) |  | ||||||
|     return output_steer, desired_angle, lqr_log |  | ||||||
| @ -0,0 +1,79 @@ | |||||||
|  | import math | ||||||
|  | from selfdrive.controls.lib.pid import PIDController | ||||||
|  | from common.numpy_fast import interp | ||||||
|  | from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED | ||||||
|  | from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY | ||||||
|  | from cereal import log | ||||||
|  | 
 | ||||||
|  | # At higher speeds (25+mph) we can assume: | ||||||
|  | # Lateral acceleration achieved by a specific car correlates to | ||||||
|  | # torque applied to the steering rack. It does not correlate to | ||||||
|  | # wheel slip, or to speed. | ||||||
|  | 
 | ||||||
|  | # This controller applies torque to achieve desired lateral | ||||||
|  | # accelerations. To compensate for the low speed effects we | ||||||
|  | # use a LOW_SPEED_FACTOR in the error. Additionally there is | ||||||
|  | # friction in the steering wheel that needs to be overcome to | ||||||
|  | # move it at all, this is compensated for too. | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | LOW_SPEED_FACTOR = 200 | ||||||
|  | JERK_THRESHOLD = 0.2 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class LatControlTorque(LatControl): | ||||||
|  |   def __init__(self, CP, CI): | ||||||
|  |     super().__init__(CP, CI) | ||||||
|  |     self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki, | ||||||
|  |                             k_f=CP.lateralTuning.torque.kf, pos_limit=1.0, neg_limit=-1.0) | ||||||
|  |     self.get_steer_feedforward = CI.get_steer_feedforward_function() | ||||||
|  |     self.steer_max = 1.0 | ||||||
|  |     self.pid.pos_limit = self.steer_max | ||||||
|  |     self.pid.neg_limit = -self.steer_max | ||||||
|  |     self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle | ||||||
|  |     self.friction = CP.lateralTuning.torque.friction | ||||||
|  | 
 | ||||||
|  |   def reset(self): | ||||||
|  |     super().reset() | ||||||
|  |     self.pid.reset() | ||||||
|  | 
 | ||||||
|  |   def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk): | ||||||
|  |     pid_log = log.ControlsState.LateralTorqueState.new_message() | ||||||
|  | 
 | ||||||
|  |     if CS.vEgo < MIN_STEER_SPEED or not active: | ||||||
|  |       output_torque = 0.0 | ||||||
|  |       pid_log.active = False | ||||||
|  |       self.pid.reset() | ||||||
|  |     else: | ||||||
|  |       if self.use_steering_angle: | ||||||
|  |         actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) | ||||||
|  |       else: | ||||||
|  |         actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo | ||||||
|  |       desired_lateral_accel = desired_curvature * CS.vEgo**2 | ||||||
|  |       desired_lateral_jerk = desired_curvature_rate * CS.vEgo**2 | ||||||
|  |       actual_lateral_accel = actual_curvature * CS.vEgo**2 | ||||||
|  | 
 | ||||||
|  |       setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature | ||||||
|  |       measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature | ||||||
|  |       error = setpoint - measurement | ||||||
|  |       pid_log.error = error | ||||||
|  | 
 | ||||||
|  |       ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY | ||||||
|  |       output_torque = self.pid.update(error, | ||||||
|  |                                       override=CS.steeringPressed, feedforward=ff, | ||||||
|  |                                       speed=CS.vEgo, | ||||||
|  |                                       freeze_integrator=CS.steeringRateLimited) | ||||||
|  | 
 | ||||||
|  |       friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction]) | ||||||
|  |       output_torque += friction_compensation | ||||||
|  | 
 | ||||||
|  |       pid_log.active = True | ||||||
|  |       pid_log.p = self.pid.p | ||||||
|  |       pid_log.i = self.pid.i | ||||||
|  |       pid_log.d = self.pid.d | ||||||
|  |       pid_log.f = self.pid.f | ||||||
|  |       pid_log.output = -output_torque | ||||||
|  |       pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS) | ||||||
|  | 
 | ||||||
|  |     #TODO left is positive in this convention | ||||||
|  |     return -output_torque, 0.0, pid_log | ||||||
| @ -1 +1 @@ | |||||||
| 22356d49a926a62c01d698d77c1f323016b68fd8 | 185f5f9c8d878ad4b98664afc7147400476208cc | ||||||
					Loading…
					
					
				
		Reference in new issue