Lateral torque-based control with roll on TSS2 corolla and TSSP rav4 (#24260)
	
		
	
				
					
				
			* Initial commit * Fix bugs * Need more torque rate * Cleanup cray cray control * Write nicely * Chiiil * Not relevant for cray cray control * Do some logging * Seems like it has more torque than I thought * Bit more feedforward * Tune change * Retune * Retune * Little more chill * Add coroll * Add corolla * Give craycray a good name * Update to proper logging * D to the PI * Should be in radians * Add d * Start oscillations * Add D term * Only change torque rate limits for new tune * Add d logging * Should be enough * Wrong sign in D * Downtune a little * Needed to prevent faults * Add lqr rav4 to tune * Try derivative again * Data based retune * Data based retune * add friction compensation * Doesnt need too much P with friction comp * remove lqr * Remove kd * Fix tests * fix tests * Too much error * Get roll induced error under 1cm/deg * Too much jitter * Do roll comp * Add ki * Final update * Update refs * Cleanup latcontrol_torque a little morepull/214/head
							parent
							
								
									6877059b45
								
							
						
					
					
						commit
						fe0bcdaef6
					
				
				 16 changed files with 120 additions and 123 deletions
			
			
		| @ -1,84 +0,0 @@ | ||||
| import math | ||||
| import numpy as np | ||||
| 
 | ||||
| from common.numpy_fast import clip | ||||
| from common.realtime import DT_CTRL | ||||
| from cereal import log | ||||
| from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED | ||||
| 
 | ||||
| 
 | ||||
| class LatControlLQR(LatControl): | ||||
|   def __init__(self, CP, CI): | ||||
|     super().__init__(CP, CI) | ||||
|     self.scale = CP.lateralTuning.lqr.scale | ||||
|     self.ki = CP.lateralTuning.lqr.ki | ||||
| 
 | ||||
|     self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2)) | ||||
|     self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1)) | ||||
|     self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2)) | ||||
|     self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2)) | ||||
|     self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1)) | ||||
|     self.dc_gain = CP.lateralTuning.lqr.dcGain | ||||
| 
 | ||||
|     self.x_hat = np.array([[0], [0]]) | ||||
|     self.i_unwind_rate = 0.3 * DT_CTRL | ||||
|     self.i_rate = 1.0 * DT_CTRL | ||||
| 
 | ||||
|     self.reset() | ||||
| 
 | ||||
|   def reset(self): | ||||
|     super().reset() | ||||
|     self.i_lqr = 0.0 | ||||
| 
 | ||||
|   def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): | ||||
|     lqr_log = log.ControlsState.LateralLQRState.new_message() | ||||
| 
 | ||||
|     torque_scale = (0.45 + CS.vEgo / 60.0)**2  # Scale actuator model with speed | ||||
| 
 | ||||
|     # Subtract offset. Zero angle should correspond to zero torque | ||||
|     steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg | ||||
| 
 | ||||
|     desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) | ||||
| 
 | ||||
|     instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg | ||||
|     desired_angle += instant_offset  # Only add offset that originates from vehicle model errors | ||||
|     lqr_log.steeringAngleDesiredDeg = desired_angle | ||||
| 
 | ||||
|     # Update Kalman filter | ||||
|     angle_steers_k = float(self.C.dot(self.x_hat)) | ||||
|     e = steering_angle_no_offset - angle_steers_k | ||||
|     self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e) | ||||
| 
 | ||||
|     if CS.vEgo < MIN_STEER_SPEED or not active: | ||||
|       lqr_log.active = False | ||||
|       lqr_output = 0. | ||||
|       output_steer = 0. | ||||
|       self.reset() | ||||
|     else: | ||||
|       lqr_log.active = True | ||||
| 
 | ||||
|       # LQR | ||||
|       u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat)) | ||||
|       lqr_output = torque_scale * u_lqr / self.scale | ||||
| 
 | ||||
|       # Integrator | ||||
|       if CS.steeringPressed: | ||||
|         self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr)) | ||||
|       else: | ||||
|         error = desired_angle - angle_steers_k | ||||
|         i = self.i_lqr + self.ki * self.i_rate * error | ||||
|         control = lqr_output + i | ||||
| 
 | ||||
|         if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \ | ||||
|            (error <= 0 and (control >= -self.steer_max or i > 0.0)): | ||||
|           self.i_lqr = i | ||||
| 
 | ||||
|       output_steer = lqr_output + self.i_lqr | ||||
|       output_steer = clip(output_steer, -self.steer_max, self.steer_max) | ||||
| 
 | ||||
|     lqr_log.steeringAngleDeg = angle_steers_k | ||||
|     lqr_log.i = self.i_lqr | ||||
|     lqr_log.output = output_steer | ||||
|     lqr_log.lqrOutput = lqr_output | ||||
|     lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS) | ||||
|     return output_steer, desired_angle, lqr_log | ||||
| @ -0,0 +1,79 @@ | ||||
| import math | ||||
| from selfdrive.controls.lib.pid import PIDController | ||||
| from common.numpy_fast import interp | ||||
| from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED | ||||
| from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY | ||||
| from cereal import log | ||||
| 
 | ||||
| # At higher speeds (25+mph) we can assume: | ||||
| # Lateral acceleration achieved by a specific car correlates to | ||||
| # torque applied to the steering rack. It does not correlate to | ||||
| # wheel slip, or to speed. | ||||
| 
 | ||||
| # This controller applies torque to achieve desired lateral | ||||
| # accelerations. To compensate for the low speed effects we | ||||
| # use a LOW_SPEED_FACTOR in the error. Additionally there is | ||||
| # friction in the steering wheel that needs to be overcome to | ||||
| # move it at all, this is compensated for too. | ||||
| 
 | ||||
| 
 | ||||
| LOW_SPEED_FACTOR = 200 | ||||
| JERK_THRESHOLD = 0.2 | ||||
| 
 | ||||
| 
 | ||||
| class LatControlTorque(LatControl): | ||||
|   def __init__(self, CP, CI): | ||||
|     super().__init__(CP, CI) | ||||
|     self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki, | ||||
|                             k_f=CP.lateralTuning.torque.kf, pos_limit=1.0, neg_limit=-1.0) | ||||
|     self.get_steer_feedforward = CI.get_steer_feedforward_function() | ||||
|     self.steer_max = 1.0 | ||||
|     self.pid.pos_limit = self.steer_max | ||||
|     self.pid.neg_limit = -self.steer_max | ||||
|     self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle | ||||
|     self.friction = CP.lateralTuning.torque.friction | ||||
| 
 | ||||
|   def reset(self): | ||||
|     super().reset() | ||||
|     self.pid.reset() | ||||
| 
 | ||||
|   def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk): | ||||
|     pid_log = log.ControlsState.LateralTorqueState.new_message() | ||||
| 
 | ||||
|     if CS.vEgo < MIN_STEER_SPEED or not active: | ||||
|       output_torque = 0.0 | ||||
|       pid_log.active = False | ||||
|       self.pid.reset() | ||||
|     else: | ||||
|       if self.use_steering_angle: | ||||
|         actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) | ||||
|       else: | ||||
|         actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo | ||||
|       desired_lateral_accel = desired_curvature * CS.vEgo**2 | ||||
|       desired_lateral_jerk = desired_curvature_rate * CS.vEgo**2 | ||||
|       actual_lateral_accel = actual_curvature * CS.vEgo**2 | ||||
| 
 | ||||
|       setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature | ||||
|       measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature | ||||
|       error = setpoint - measurement | ||||
|       pid_log.error = error | ||||
| 
 | ||||
|       ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY | ||||
|       output_torque = self.pid.update(error, | ||||
|                                       override=CS.steeringPressed, feedforward=ff, | ||||
|                                       speed=CS.vEgo, | ||||
|                                       freeze_integrator=CS.steeringRateLimited) | ||||
| 
 | ||||
|       friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction]) | ||||
|       output_torque += friction_compensation | ||||
| 
 | ||||
|       pid_log.active = True | ||||
|       pid_log.p = self.pid.p | ||||
|       pid_log.i = self.pid.i | ||||
|       pid_log.d = self.pid.d | ||||
|       pid_log.f = self.pid.f | ||||
|       pid_log.output = -output_torque | ||||
|       pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS) | ||||
| 
 | ||||
|     #TODO left is positive in this convention | ||||
|     return -output_torque, 0.0, pid_log | ||||
| @ -1 +1 @@ | ||||
| 22356d49a926a62c01d698d77c1f323016b68fd8 | ||||
| 185f5f9c8d878ad4b98664afc7147400476208cc | ||||
					Loading…
					
					
				
		Reference in new issue