#!/usr/bin/env python3 import math import numpy as np from common.numpy_fast import interp import cereal.messaging as messaging from common.conversions import Conversions as CV from common.filter_simple import FirstOrderFilter from common.realtime import DT_MDL from selfdrive.modeld.constants import T_IDXS from selfdrive.controls.lib.longcontrol import LongCtrlState from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N from system.swaglog import cloudlog from selfdrive.controls.lib.vision_turn_controller import VisionTurnController from selfdrive.controls.lib.speed_limit_controller import SpeedLimitController, SpeedLimitResolver from selfdrive.controls.lib.turn_speed_controller import TurnSpeedController from selfdrive.controls.lib.events import Events LON_MPC_STEP = 0.2 # first step is 0.2s AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted A_CRUISE_MIN = -1.2 A_CRUISE_MAX_VALS = [1.2, 1.2, 0.8, 0.6] A_CRUISE_MAX_BP = [0., 15., 25., 40.] # Lookup table for turns _A_TOTAL_MAX_V = [1.7, 3.2] _A_TOTAL_MAX_BP = [20., 40.] #DP_FOLLOWING_DIST = { # 0: 1.0, # 1: 1.2, # 2: 1.4, # 3: 1.8, #} DP_ACCEL_ECO = 0 DP_ACCEL_NORMAL = 1 DP_ACCEL_SPORT = 2 # accel profile by @arne182 modified by cgw _DP_CRUISE_MIN_V = [-0.05, -0.1, -0.3, -0.4, -0.4, -0.23, -0.1] _DP_CRUISE_MIN_V_ECO = [-0.1, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0] _DP_CRUISE_MIN_V_SPORT = [-0.1, -0.2, -0.4, -0.5, -0.5, -0.25, -0.1] _DP_CRUISE_MIN_BP = [0.0, 3.0, 5.0, 20.0, 33.3, 40.0, 55.0] _DP_CRUISE_MAX_V = [3.5, 1.7, 1.31, 0.95, 0.77, 0.67, 0.55, 0.47, 0.31, 0.13] _DP_CRUISE_MAX_V_ECO = [2.7, 1.4, 1.2, 0.7, 0.48, 0.35, 0.25, 0.15, 0.12, 0.06] _DP_CRUISE_MAX_V_SPORT = [3.5, 3.5, 2.5, 1.5, 2.0, 2.0, 2.0, 1.5, 1.0, 0.5] _DP_CRUISE_MAX_BP = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.] def dp_calc_cruise_accel_limits(v_ego, dp_profile): if dp_profile == DP_ACCEL_ECO: a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_ECO) a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_ECO) elif dp_profile == DP_ACCEL_SPORT: a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_SPORT) a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_SPORT) else: a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V) a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V) return a_cruise_min, a_cruise_max def get_max_accel(v_ego): return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS) def limit_accel_in_turns(v_ego, angle_steers, a_target, CP): """ This function returns a limited long acceleration allowed, depending on the existing lateral acceleration this should avoid accelerating when losing the target in turns """ # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel # The lookup table for turns should also be updated if we do this a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V) a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase) a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.)) return [a_target[0], min(a_target[1], a_x_allowed)] class Planner: def __init__(self, CP, init_v=0.0, init_a=0.0): self.CP = CP self.mpc = LongitudinalMpc() self.fcw = False self.a_desired = init_a self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL) self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N) self.solverExecutionTime = 0.0 # dp self.dp_accel_profile_ctrl = False self.dp_accel_profile = DP_ACCEL_ECO self.cruise_source = 'cruise' self.vision_turn_controller = VisionTurnController(CP) self.speed_limit_controller = SpeedLimitController() self.events = Events() self.turn_speed_controller = TurnSpeedController() def update(self, sm): v_ego = sm['carState'].vEgo # dp self.dp_accel_profile_ctrl = sm['dragonConf'].dpAccelProfileCtrl self.dp_accel_profile = sm['dragonConf'].dpAccelProfile v_cruise_kph = sm['controlsState'].vCruise v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS long_control_off = sm['controlsState'].longControlState == LongCtrlState.off force_slow_decel = sm['controlsState'].forceDecel # Reset current state when not engaged, or user is controlling the speed reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled # No change cost when user is controlling the speed, or when standstill prev_accel_constraint = not (reset_state or sm['carState'].standstill) if reset_state: self.v_desired_filter.x = v_ego self.a_desired = 0.0 # Prevent divergence, smooth in current v_ego self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego)) # Get acceleration and active solutions for custom long mpc. self.cruise_source, a_min_sol, v_cruise_sol = self.cruise_solutions(not reset_state, self.v_desired_filter.x, self.a_desired, v_cruise, sm) if not self.dp_accel_profile_ctrl: accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)] else: accel_limits = dp_calc_cruise_accel_limits(v_ego, self.dp_accel_profile) accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP) if force_slow_decel: # if required so, force a smooth deceleration accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL) accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1]) # clip limits, cannot init MPC outside of bounds accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05, a_min_sol) accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05) self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1]) self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired) self.mpc.update(sm['carState'], sm['radarState'], v_cruise_sol, prev_accel_constraint) self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution) self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution) self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution) # TODO counter is only needed because radar is glitchy, remove once radar is gone self.fcw = self.mpc.crash_cnt > 5 if self.fcw: cloudlog.info("FCW triggered") # Interpolate 0.05 seconds and save as starting point for next iteration a_prev = self.a_desired self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory)) self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0 def publish(self, sm, pm): plan_send = messaging.new_message('longitudinalPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState']) longitudinalPlan = plan_send.longitudinalPlan longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2'] longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2'] longitudinalPlan.speeds = self.v_desired_trajectory.tolist() longitudinalPlan.accels = self.a_desired_trajectory.tolist() longitudinalPlan.jerks = self.j_desired_trajectory.tolist() longitudinalPlan.hasLead = sm['radarState'].leadOne.status longitudinalPlan.longitudinalPlanSource = self.mpc.source if self.mpc.source != 'cruise' else self.cruise_source longitudinalPlan.fcw = self.fcw longitudinalPlan.solverExecutionTime = self.mpc.solve_time longitudinalPlan.visionTurnControllerState = self.vision_turn_controller.state longitudinalPlan.visionTurnSpeed = float(self.vision_turn_controller.v_turn) longitudinalPlan.speedLimitControlState = self.speed_limit_controller.state longitudinalPlan.speedLimit = float(self.speed_limit_controller.speed_limit) longitudinalPlan.speedLimitOffset = float(self.speed_limit_controller.speed_limit_offset) longitudinalPlan.distToSpeedLimit = float(self.speed_limit_controller.distance) longitudinalPlan.isMapSpeedLimit = bool(self.speed_limit_controller.source == SpeedLimitResolver.Source.map_data) longitudinalPlan.eventsDEPRECATED = self.events.to_msg() longitudinalPlan.turnSpeedControlState = self.turn_speed_controller.state longitudinalPlan.turnSpeed = float(self.turn_speed_controller.speed_limit) longitudinalPlan.distToTurn = float(self.turn_speed_controller.distance) longitudinalPlan.turnSign = int(self.turn_speed_controller.turn_sign) pm.send('longitudinalPlan', plan_send) def cruise_solutions(self, enabled, v_ego, a_ego, v_cruise, sm): # Update controllers self.vision_turn_controller.update(enabled, v_ego, a_ego, v_cruise, sm) self.events = Events() self.speed_limit_controller.update(enabled, v_ego, a_ego, sm, v_cruise, self.events) self.turn_speed_controller.update(enabled, v_ego, a_ego, sm) # Pick solution with lowest velocity target. a_solutions = {'cruise': float("inf")} v_solutions = {'cruise': v_cruise} if self.vision_turn_controller.is_active: a_solutions['turn'] = self.vision_turn_controller.a_target v_solutions['turn'] = self.vision_turn_controller.v_turn if self.speed_limit_controller.is_active: a_solutions['limit'] = self.speed_limit_controller.a_target v_solutions['limit'] = self.speed_limit_controller.speed_limit_offseted if self.turn_speed_controller.is_active: a_solutions['turnlimit'] = self.turn_speed_controller.a_target v_solutions['turnlimit'] = self.turn_speed_controller.speed_limit source = min(v_solutions, key=v_solutions.get) return source, a_solutions[source], v_solutions[source]