You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							364 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							364 lines
						
					
					
						
							15 KiB
						
					
					
				// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | 
						|
// Licensed under the MIT License:
 | 
						|
//
 | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
// of this software and associated documentation files (the "Software"), to deal
 | 
						|
// in the Software without restriction, including without limitation the rights
 | 
						|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
// copies of the Software, and to permit persons to whom the Software is
 | 
						|
// furnished to do so, subject to the following conditions:
 | 
						|
//
 | 
						|
// The above copyright notice and this permission notice shall be included in
 | 
						|
// all copies or substantial portions of the Software.
 | 
						|
//
 | 
						|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
// THE SOFTWARE.
 | 
						|
 | 
						|
// This file defines a notion of tuples that is simpler that `std::tuple`.  It works as follows:
 | 
						|
// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
 | 
						|
// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
 | 
						|
//   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
 | 
						|
// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
 | 
						|
// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
 | 
						|
//   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
 | 
						|
//
 | 
						|
// Note that:
 | 
						|
// - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
 | 
						|
//   type.
 | 
						|
// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
 | 
						|
//   flattened.
 | 
						|
// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
 | 
						|
//   with type inference and `tuple()`.
 | 
						|
 | 
						|
#ifndef KJ_TUPLE_H_
 | 
						|
#define KJ_TUPLE_H_
 | 
						|
 | 
						|
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
 | 
						|
#pragma GCC system_header
 | 
						|
#endif
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
namespace kj {
 | 
						|
namespace _ {  // private
 | 
						|
 | 
						|
template <size_t index, typename... T>
 | 
						|
struct TypeByIndex_;
 | 
						|
template <typename First, typename... Rest>
 | 
						|
struct TypeByIndex_<0, First, Rest...> {
 | 
						|
  typedef First Type;
 | 
						|
};
 | 
						|
template <size_t index, typename First, typename... Rest>
 | 
						|
struct TypeByIndex_<index, First, Rest...>
 | 
						|
    : public TypeByIndex_<index - 1, Rest...> {};
 | 
						|
template <size_t index>
 | 
						|
struct TypeByIndex_<index> {
 | 
						|
  static_assert(index != index, "Index out-of-range.");
 | 
						|
};
 | 
						|
template <size_t index, typename... T>
 | 
						|
using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
 | 
						|
// Chose a particular type out of a list of types, by index.
 | 
						|
 | 
						|
template <size_t... s>
 | 
						|
struct Indexes {};
 | 
						|
// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
 | 
						|
// templates against them and unpack them with '...'.
 | 
						|
 | 
						|
template <size_t end, size_t... prefix>
 | 
						|
struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
 | 
						|
template <size_t... prefix>
 | 
						|
struct MakeIndexes_<0, prefix...> {
 | 
						|
  typedef Indexes<prefix...> Type;
 | 
						|
};
 | 
						|
template <size_t end>
 | 
						|
using MakeIndexes = typename MakeIndexes_<end>::Type;
 | 
						|
// Equivalent to Indexes<0, 1, 2, ..., end>.
 | 
						|
 | 
						|
template <typename... T>
 | 
						|
class Tuple;
 | 
						|
template <size_t index, typename... U>
 | 
						|
inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
 | 
						|
template <size_t index, typename... U>
 | 
						|
inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
 | 
						|
template <size_t index, typename... U>
 | 
						|
inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
 | 
						|
 | 
						|
template <uint index, typename T>
 | 
						|
struct TupleElement {
 | 
						|
  // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
 | 
						|
  // from a TupleElement for each element, which is more efficient than a recursive definition.
 | 
						|
 | 
						|
  T value;
 | 
						|
  TupleElement() = default;
 | 
						|
  constexpr inline TupleElement(const T& value): value(value) {}
 | 
						|
  constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
 | 
						|
};
 | 
						|
 | 
						|
template <uint index, typename T>
 | 
						|
struct TupleElement<index, T&> {
 | 
						|
  // If tuples contained references, one of the following would have to be true:
 | 
						|
  // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
 | 
						|
  //   probably not what you expected.
 | 
						|
  // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
 | 
						|
  //   Tuple<Foo, Bar>.
 | 
						|
  static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
 | 
						|
};
 | 
						|
 | 
						|
template <uint index, typename... T>
 | 
						|
struct TupleElement<index, Tuple<T...>> {
 | 
						|
  static_assert(sizeof(Tuple<T...>*) == 0,
 | 
						|
                "Tuples cannot contain other tuples -- they should be flattened.");
 | 
						|
};
 | 
						|
 | 
						|
template <typename Indexes, typename... Types>
 | 
						|
struct TupleImpl;
 | 
						|
 | 
						|
template <size_t... indexes, typename... Types>
 | 
						|
struct TupleImpl<Indexes<indexes...>, Types...>
 | 
						|
    : public TupleElement<indexes, Types>... {
 | 
						|
  // Implementation of Tuple.  The only reason we need this rather than rolling this into class
 | 
						|
  // Tuple (below) is so that we can get "indexes" as an unpackable list.
 | 
						|
 | 
						|
  static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
 | 
						|
 | 
						|
  template <typename... Params>
 | 
						|
  inline TupleImpl(Params&&... params)
 | 
						|
      : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
 | 
						|
    // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
 | 
						|
    // segfaults instead.)
 | 
						|
    static_assert(sizeof...(params) == sizeof...(indexes),
 | 
						|
                  "Wrong number of parameters to Tuple constructor.");
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline TupleImpl(Tuple<U...>&& other)
 | 
						|
      : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline TupleImpl(Tuple<U...>& other)
 | 
						|
      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline TupleImpl(const Tuple<U...>& other)
 | 
						|
      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
 | 
						|
};
 | 
						|
 | 
						|
struct MakeTupleFunc;
 | 
						|
 | 
						|
template <typename... T>
 | 
						|
class Tuple {
 | 
						|
  // The actual Tuple class (used for tuples of size other than 1).
 | 
						|
 | 
						|
public:
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
 | 
						|
  template <typename... U>
 | 
						|
  constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
 | 
						|
 | 
						|
private:
 | 
						|
  template <typename... Params>
 | 
						|
  constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
 | 
						|
 | 
						|
  TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
 | 
						|
 | 
						|
  template <size_t index, typename... U>
 | 
						|
  friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
 | 
						|
  template <size_t index, typename... U>
 | 
						|
  friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
 | 
						|
  template <size_t index, typename... U>
 | 
						|
  friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
 | 
						|
  friend struct MakeTupleFunc;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
class Tuple<> {
 | 
						|
  // Simplified zero-member version of Tuple.  In particular this is important to make sure that
 | 
						|
  // Tuple<>() is constexpr.
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class Tuple<T>;
 | 
						|
// Single-element tuple should never be used.  The public API should ensure this.
 | 
						|
 | 
						|
template <size_t index, typename... T>
 | 
						|
inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
 | 
						|
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | 
						|
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | 
						|
  return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
 | 
						|
}
 | 
						|
template <size_t index, typename... T>
 | 
						|
inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
 | 
						|
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | 
						|
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | 
						|
  return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
 | 
						|
}
 | 
						|
template <size_t index, typename... T>
 | 
						|
inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
 | 
						|
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | 
						|
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | 
						|
  return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
 | 
						|
}
 | 
						|
template <size_t index, typename T>
 | 
						|
inline T&& getImpl(T&& value) {
 | 
						|
  // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
 | 
						|
 | 
						|
  // Non-tuples are equivalent to one-element tuples.
 | 
						|
  static_assert(index == 0, "Tuple element index out-of-bounds.");
 | 
						|
  return kj::fwd<T>(value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename Func, typename SoFar, typename... T>
 | 
						|
struct ExpandAndApplyResult_;
 | 
						|
// Template which computes the return type of applying Func to T... after flattening tuples.
 | 
						|
// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
 | 
						|
// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
 | 
						|
 | 
						|
template <typename Func, typename First, typename... Rest, typename... T>
 | 
						|
struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
 | 
						|
    : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | 
						|
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
 | 
						|
    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | 
						|
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
 | 
						|
    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | 
						|
struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
 | 
						|
    : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
 | 
						|
template <typename Func, typename... T>
 | 
						|
struct ExpandAndApplyResult_<Func, Tuple<T...>> {
 | 
						|
  typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
 | 
						|
};
 | 
						|
template <typename Func, typename... T>
 | 
						|
using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
 | 
						|
// Computes the expected return type of `expandAndApply()`.
 | 
						|
 | 
						|
template <typename Func>
 | 
						|
inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
 | 
						|
  return func();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename First, typename... Rest>
 | 
						|
struct ExpandAndApplyFunc {
 | 
						|
  Func&& func;
 | 
						|
  First&& first;
 | 
						|
  ExpandAndApplyFunc(Func&& func, First&& first)
 | 
						|
      : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
 | 
						|
  template <typename... T>
 | 
						|
  auto operator()(T&&... params)
 | 
						|
      -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
 | 
						|
    return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Func, typename First, typename... Rest>
 | 
						|
inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, First, Rest...> {
 | 
						|
 | 
						|
  return expandAndApply(
 | 
						|
      ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
 | 
						|
      kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest>
 | 
						|
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
 | 
						|
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | 
						|
      kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest>
 | 
						|
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | 
						|
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | 
						|
      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest>
 | 
						|
inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | 
						|
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | 
						|
      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
 | 
						|
inline auto expandAndApplyWithIndexes(
 | 
						|
    Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
 | 
						|
  return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
 | 
						|
                        kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
 | 
						|
inline auto expandAndApplyWithIndexes(
 | 
						|
    Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
 | 
						|
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | 
						|
  return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
 | 
						|
                       kj::fwd<Rest>(rest)...);
 | 
						|
}
 | 
						|
 | 
						|
struct MakeTupleFunc {
 | 
						|
  template <typename... Params>
 | 
						|
  Tuple<Decay<Params>...> operator()(Params&&... params) {
 | 
						|
    return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
 | 
						|
  }
 | 
						|
  template <typename Param>
 | 
						|
  Decay<Param> operator()(Param&& param) {
 | 
						|
    return kj::fwd<Param>(param);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace _ (private)
 | 
						|
 | 
						|
template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
 | 
						|
template <typename T> struct Tuple_<T> { typedef T Type; };
 | 
						|
 | 
						|
template <typename... T> using Tuple = typename Tuple_<T...>::Type;
 | 
						|
// Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
 | 
						|
// other than 1 expand to an internal type.  Either way, you can construct a Tuple using
 | 
						|
// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
 | 
						|
// as arguments to a function using `kj::apply(func, myTuple)`.
 | 
						|
//
 | 
						|
// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
 | 
						|
// construct a tuple from other tuples, the elements are flattened and concatenated.
 | 
						|
 | 
						|
template <typename... Params>
 | 
						|
inline auto tuple(Params&&... params)
 | 
						|
    -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
 | 
						|
  // Construct a new tuple from the given values.  Any tuples in the argument list will be
 | 
						|
  // flattened into the result.
 | 
						|
  return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
 | 
						|
}
 | 
						|
 | 
						|
template <size_t index, typename Tuple>
 | 
						|
inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
 | 
						|
  // Unpack and return the tuple element at the given index.  The index is specified as a template
 | 
						|
  // parameter, e.g. `kj::get<3>(myTuple)`.
 | 
						|
  return _::getImpl<index>(kj::fwd<Tuple>(tuple));
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func, typename... Params>
 | 
						|
inline auto apply(Func&& func, Params&&... params)
 | 
						|
    -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
 | 
						|
  // Apply a function to some arguments, expanding tuples into separate arguments.
 | 
						|
  return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
 | 
						|
template <typename... T> struct TupleSize_<_::Tuple<T...>> {
 | 
						|
  static constexpr size_t size = sizeof...(T);
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
constexpr size_t tupleSize() { return TupleSize_<T>::size; }
 | 
						|
// Returns size of the tuple T.
 | 
						|
 | 
						|
}  // namespace kj
 | 
						|
 | 
						|
#endif  // KJ_TUPLE_H_
 | 
						|
 |