dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

251 lines
11 KiB

#!/usr/bin/env python3
import numpy as np
from collections import deque, defaultdict
import cereal.messaging as messaging
from cereal import car, log
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot.selfdrive.locationd.helpers import PointBuckets, ParameterEstimator
HISTORY = 5 # secs
POINTS_PER_BUCKET = 1500
MIN_POINTS_TOTAL = 4000
MIN_POINTS_TOTAL_QLOG = 600
FIT_POINTS_TOTAL = 2000
FIT_POINTS_TOTAL_QLOG = 600
MIN_VEL = 15 # m/s
FRICTION_FACTOR = 1.5 # ~85% of data coverage
FACTOR_SANITY = 0.3
FACTOR_SANITY_QLOG = 0.5
FRICTION_SANITY = 0.5
FRICTION_SANITY_QLOG = 0.8
STEER_MIN_THRESHOLD = 0.02
MIN_FILTER_DECAY = 50
MAX_FILTER_DECAY = 250
LAT_ACC_THRESHOLD = 1
STEER_BUCKET_BOUNDS = [(-0.5, -0.3), (-0.3, -0.2), (-0.2, -0.1), (-0.1, 0), (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.5)]
MIN_BUCKET_POINTS = np.array([100, 300, 500, 500, 500, 500, 300, 100])
MIN_ENGAGE_BUFFER = 2 # secs
VERSION = 1 # bump this to invalidate old parameter caches
ALLOWED_CARS = ['toyota', 'hyundai']
def slope2rot(slope):
sin = np.sqrt(slope**2 / (slope**2 + 1))
cos = np.sqrt(1 / (slope**2 + 1))
return np.array([[cos, -sin], [sin, cos]])
class TorqueBuckets(PointBuckets):
def add_point(self, x, y):
for bound_min, bound_max in self.x_bounds:
if (x >= bound_min) and (x < bound_max):
self.buckets[(bound_min, bound_max)].append([x, 1.0, y])
break
class TorqueEstimator(ParameterEstimator):
def __init__(self, CP, decimated=False):
self.hist_len = int(HISTORY / DT_MDL)
self.lag = CP.steerActuatorDelay + .2 # from controlsd
if decimated:
self.min_bucket_points = MIN_BUCKET_POINTS / 10
self.min_points_total = MIN_POINTS_TOTAL_QLOG
self.fit_points = FIT_POINTS_TOTAL_QLOG
self.factor_sanity = FACTOR_SANITY_QLOG
self.friction_sanity = FRICTION_SANITY_QLOG
else:
self.min_bucket_points = MIN_BUCKET_POINTS
self.min_points_total = MIN_POINTS_TOTAL
self.fit_points = FIT_POINTS_TOTAL
self.factor_sanity = FACTOR_SANITY
self.friction_sanity = FRICTION_SANITY
self.offline_friction = 0.0
self.offline_latAccelFactor = 0.0
self.resets = 0.0
self.use_params = CP.carName in ALLOWED_CARS and CP.lateralTuning.which() == 'torque'
if CP.lateralTuning.which() == 'torque':
self.offline_friction = CP.lateralTuning.torque.friction
self.offline_latAccelFactor = CP.lateralTuning.torque.latAccelFactor
self.reset()
initial_params = {
'latAccelFactor': self.offline_latAccelFactor,
'latAccelOffset': 0.0,
'frictionCoefficient': self.offline_friction,
'points': []
}
self.decay = MIN_FILTER_DECAY
self.min_lataccel_factor = (1.0 - self.factor_sanity) * self.offline_latAccelFactor
self.max_lataccel_factor = (1.0 + self.factor_sanity) * self.offline_latAccelFactor
self.min_friction = (1.0 - self.friction_sanity) * self.offline_friction
self.max_friction = (1.0 + self.friction_sanity) * self.offline_friction
# try to restore cached params
params = Params()
params_cache = params.get("CarParamsPrevRoute")
torque_cache = params.get("LiveTorqueParameters")
if params_cache is not None and torque_cache is not None:
try:
with log.Event.from_bytes(torque_cache) as log_evt:
cache_ltp = log_evt.liveTorqueParameters
with car.CarParams.from_bytes(params_cache) as msg:
cache_CP = msg
if self.get_restore_key(cache_CP, cache_ltp.version) == self.get_restore_key(CP, VERSION):
if cache_ltp.liveValid:
initial_params = {
'latAccelFactor': cache_ltp.latAccelFactorFiltered,
'latAccelOffset': cache_ltp.latAccelOffsetFiltered,
'frictionCoefficient': cache_ltp.frictionCoefficientFiltered
}
initial_params['points'] = cache_ltp.points
self.decay = cache_ltp.decay
self.filtered_points.load_points(initial_params['points'])
cloudlog.info("restored torque params from cache")
except Exception:
cloudlog.exception("failed to restore cached torque params")
params.remove("LiveTorqueParameters")
self.filtered_params = {}
for param in initial_params:
self.filtered_params[param] = FirstOrderFilter(initial_params[param], self.decay, DT_MDL)
def get_restore_key(self, CP, version):
a, b = None, None
if CP.lateralTuning.which() == 'torque':
a = CP.lateralTuning.torque.friction
b = CP.lateralTuning.torque.latAccelFactor
return (CP.carFingerprint, CP.lateralTuning.which(), a, b, version)
def reset(self):
self.resets += 1.0
self.decay = MIN_FILTER_DECAY
self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len))
self.filtered_points = TorqueBuckets(x_bounds=STEER_BUCKET_BOUNDS,
min_points=self.min_bucket_points,
min_points_total=self.min_points_total,
points_per_bucket=POINTS_PER_BUCKET,
rowsize=3)
def estimate_params(self):
points = self.filtered_points.get_points(self.fit_points)
# total least square solution as both x and y are noisy observations
# this is empirically the slope of the hysteresis parallelogram as opposed to the line through the diagonals
try:
_, _, v = np.linalg.svd(points, full_matrices=False)
slope, offset = -v.T[0:2, 2] / v.T[2, 2]
_, spread = np.matmul(points[:, [0, 2]], slope2rot(slope)).T
friction_coeff = np.std(spread) * FRICTION_FACTOR
except np.linalg.LinAlgError as e:
cloudlog.exception(f"Error computing live torque params: {e}")
slope = offset = friction_coeff = np.nan
return slope, offset, friction_coeff
def update_params(self, params):
self.decay = min(self.decay + DT_MDL, MAX_FILTER_DECAY)
for param, value in params.items():
self.filtered_params[param].update(value)
self.filtered_params[param].update_alpha(self.decay)
def handle_log(self, t, which, msg):
if which == "carControl":
self.raw_points["carControl_t"].append(t + self.lag)
self.raw_points["active"].append(msg.latActive)
elif which == "carOutput":
self.raw_points["carOutput_t"].append(t + self.lag)
self.raw_points["steer_torque"].append(-msg.actuatorsOutput.steer)
elif which == "carState":
self.raw_points["carState_t"].append(t + self.lag)
self.raw_points["vego"].append(msg.vEgo)
self.raw_points["steer_override"].append(msg.steeringPressed)
elif which == "liveLocationKalman":
if len(self.raw_points['steer_torque']) == self.hist_len:
yaw_rate = msg.angularVelocityCalibrated.value[2]
roll = msg.orientationNED.value[0]
active = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carControl_t'], self.raw_points['active']).astype(bool)
steer_override = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carState_t'], self.raw_points['steer_override']).astype(bool)
vego = np.interp(t, self.raw_points['carState_t'], self.raw_points['vego'])
steer = np.interp(t, self.raw_points['carOutput_t'], self.raw_points['steer_torque'])
lateral_acc = (vego * yaw_rate) - (np.sin(roll) * ACCELERATION_DUE_TO_GRAVITY)
if all(active) and (not any(steer_override)) and (vego > MIN_VEL) and (abs(steer) > STEER_MIN_THRESHOLD) and (abs(lateral_acc) <= LAT_ACC_THRESHOLD):
self.filtered_points.add_point(float(steer), float(lateral_acc))
def get_msg(self, valid=True, with_points=False):
msg = messaging.new_message('liveTorqueParameters')
msg.valid = valid
liveTorqueParameters = msg.liveTorqueParameters
liveTorqueParameters.version = VERSION
liveTorqueParameters.useParams = self.use_params
# Calculate raw estimates when possible, only update filters when enough points are gathered
if self.filtered_points.is_calculable():
latAccelFactor, latAccelOffset, frictionCoeff = self.estimate_params()
liveTorqueParameters.latAccelFactorRaw = float(latAccelFactor)
liveTorqueParameters.latAccelOffsetRaw = float(latAccelOffset)
liveTorqueParameters.frictionCoefficientRaw = float(frictionCoeff)
if self.filtered_points.is_valid():
if any(val is None or np.isnan(val) for val in [latAccelFactor, latAccelOffset, frictionCoeff]):
cloudlog.exception("Live torque parameters are invalid.")
liveTorqueParameters.liveValid = False
self.reset()
else:
liveTorqueParameters.liveValid = True
latAccelFactor = np.clip(latAccelFactor, self.min_lataccel_factor, self.max_lataccel_factor)
frictionCoeff = np.clip(frictionCoeff, self.min_friction, self.max_friction)
self.update_params({'latAccelFactor': latAccelFactor, 'latAccelOffset': latAccelOffset, 'frictionCoefficient': frictionCoeff})
if with_points:
liveTorqueParameters.points = self.filtered_points.get_points()[:, [0, 2]].tolist()
liveTorqueParameters.latAccelFactorFiltered = float(self.filtered_params['latAccelFactor'].x)
liveTorqueParameters.latAccelOffsetFiltered = float(self.filtered_params['latAccelOffset'].x)
liveTorqueParameters.frictionCoefficientFiltered = float(self.filtered_params['frictionCoefficient'].x)
liveTorqueParameters.totalBucketPoints = len(self.filtered_points)
liveTorqueParameters.decay = self.decay
liveTorqueParameters.maxResets = self.resets
return msg
def main(demo=False):
config_realtime_process([0, 1, 2, 3], 5)
pm = messaging.PubMaster(['liveTorqueParameters'])
sm = messaging.SubMaster(['carControl', 'carOutput', 'carState', 'liveLocationKalman'], poll='liveLocationKalman')
params = Params()
with car.CarParams.from_bytes(params.get("CarParams", block=True)) as CP:
estimator = TorqueEstimator(CP)
while True:
sm.update()
if sm.all_checks():
for which in sm.updated.keys():
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
estimator.handle_log(t, which, sm[which])
# 4Hz driven by liveLocationKalman
if sm.frame % 5 == 0:
pm.send('liveTorqueParameters', estimator.get_msg(valid=sm.all_checks()))
# Cache points every 60 seconds while onroad
if sm.frame % 240 == 0:
msg = estimator.get_msg(valid=sm.all_checks(), with_points=True)
params.put_nonblocking("LiveTorqueParameters", msg.to_bytes())
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Process the --demo argument.')
parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.')
args = parser.parse_args()
main(demo=args.demo)