You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1299 lines
						
					
					
						
							55 KiB
						
					
					
				
			
		
		
	
	
							1299 lines
						
					
					
						
							55 KiB
						
					
					
				/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef __OPENCV_IMGPROC_HPP__
 | 
						|
#define __OPENCV_IMGPROC_HPP__
 | 
						|
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/imgproc/types_c.h"
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
 | 
						|
/*! \namespace cv
 | 
						|
 Namespace where all the C++ OpenCV functionality resides
 | 
						|
 */
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! various border interpolation methods
 | 
						|
enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
 | 
						|
       BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP,
 | 
						|
       BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
 | 
						|
       BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT,
 | 
						|
       BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };
 | 
						|
 | 
						|
//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
 | 
						|
CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType );
 | 
						|
 | 
						|
/*!
 | 
						|
 The Base Class for 1D or Row-wise Filters
 | 
						|
 | 
						|
 This is the base class for linear or non-linear filters that process 1D data.
 | 
						|
 In particular, such filters are used for the "horizontal" filtering parts in separable filters.
 | 
						|
 | 
						|
 Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
 | 
						|
 and those pointers can be used directly or within cv::FilterEngine.
 | 
						|
*/
 | 
						|
class CV_EXPORTS BaseRowFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    BaseRowFilter();
 | 
						|
    //! the destructor
 | 
						|
    virtual ~BaseRowFilter();
 | 
						|
    //! the filtering operator. Must be overridden in the derived classes. The horizontal border interpolation is done outside of the class.
 | 
						|
    virtual void operator()(const uchar* src, uchar* dst,
 | 
						|
                            int width, int cn) = 0;
 | 
						|
    int ksize, anchor;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*!
 | 
						|
 The Base Class for Column-wise Filters
 | 
						|
 | 
						|
 This is the base class for linear or non-linear filters that process columns of 2D arrays.
 | 
						|
 Such filters are used for the "vertical" filtering parts in separable filters.
 | 
						|
 | 
						|
 Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
 | 
						|
 and those pointers can be used directly or within cv::FilterEngine.
 | 
						|
 | 
						|
 Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
 | 
						|
 i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
 | 
						|
 must be called (e.g. the method is called by cv::FilterEngine)
 | 
						|
 */
 | 
						|
class CV_EXPORTS BaseColumnFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    BaseColumnFilter();
 | 
						|
    //! the destructor
 | 
						|
    virtual ~BaseColumnFilter();
 | 
						|
    //! the filtering operator. Must be overridden in the derived classes. The vertical border interpolation is done outside of the class.
 | 
						|
    virtual void operator()(const uchar** src, uchar* dst, int dststep,
 | 
						|
                            int dstcount, int width) = 0;
 | 
						|
    //! resets the internal buffers, if any
 | 
						|
    virtual void reset();
 | 
						|
    int ksize, anchor;
 | 
						|
};
 | 
						|
 | 
						|
/*!
 | 
						|
 The Base Class for Non-Separable 2D Filters.
 | 
						|
 | 
						|
 This is the base class for linear or non-linear 2D filters.
 | 
						|
 | 
						|
 Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
 | 
						|
 and those pointers can be used directly or within cv::FilterEngine.
 | 
						|
 | 
						|
 Similar to cv::BaseColumnFilter, the class may have some context information,
 | 
						|
 that should be reset using BaseFilter::reset() method before processing the new array.
 | 
						|
*/
 | 
						|
class CV_EXPORTS BaseFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    BaseFilter();
 | 
						|
    //! the destructor
 | 
						|
    virtual ~BaseFilter();
 | 
						|
    //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
 | 
						|
    virtual void operator()(const uchar** src, uchar* dst, int dststep,
 | 
						|
                            int dstcount, int width, int cn) = 0;
 | 
						|
    //! resets the internal buffers, if any
 | 
						|
    virtual void reset();
 | 
						|
    Size ksize;
 | 
						|
    Point anchor;
 | 
						|
};
 | 
						|
 | 
						|
/*!
 | 
						|
 The Main Class for Image Filtering.
 | 
						|
 | 
						|
 The class can be used to apply an arbitrary filtering operation to an image.
 | 
						|
 It contains all the necessary intermediate buffers, it computes extrapolated values
 | 
						|
 of the "virtual" pixels outside of the image etc.
 | 
						|
 Pointers to the initialized cv::FilterEngine instances
 | 
						|
 are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
 | 
						|
 cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
 | 
						|
 cv::createBoxFilter() and cv::createMorphologyFilter().
 | 
						|
 | 
						|
 Using the class you can process large images by parts and build complex pipelines
 | 
						|
 that include filtering as some of the stages. If all you need is to apply some pre-defined
 | 
						|
 filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
 | 
						|
 functions that create FilterEngine internally.
 | 
						|
 | 
						|
 Here is the example on how to use the class to implement Laplacian operator, which is the sum of
 | 
						|
 second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().
 | 
						|
 | 
						|
 \code
 | 
						|
 void laplace_f(const Mat& src, Mat& dst)
 | 
						|
 {
 | 
						|
     CV_Assert( src.type() == CV_32F );
 | 
						|
     // make sure the destination array has the proper size and type
 | 
						|
     dst.create(src.size(), src.type());
 | 
						|
 | 
						|
     // get the derivative and smooth kernels for d2I/dx2.
 | 
						|
     // for d2I/dy2 we could use the same kernels, just swapped
 | 
						|
     Mat kd, ks;
 | 
						|
     getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
 | 
						|
 | 
						|
     // let's process 10 source rows at once
 | 
						|
     int DELTA = std::min(10, src.rows);
 | 
						|
     Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
 | 
						|
     dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
 | 
						|
     Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
 | 
						|
     dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
 | 
						|
 | 
						|
     int y = Fxx->start(src), dsty = 0, dy = 0;
 | 
						|
     Fyy->start(src);
 | 
						|
     const uchar* sptr = src.data + y*src.step;
 | 
						|
 | 
						|
     // allocate the buffers for the spatial image derivatives;
 | 
						|
     // the buffers need to have more than DELTA rows, because at the
 | 
						|
     // last iteration the output may take max(kd.rows-1,ks.rows-1)
 | 
						|
     // rows more than the input.
 | 
						|
     Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
 | 
						|
     Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
 | 
						|
 | 
						|
     // inside the loop we always pass DELTA rows to the filter
 | 
						|
     // (note that the "proceed" method takes care of possibe overflow, since
 | 
						|
     // it was given the actual image height in the "start" method)
 | 
						|
     // on output we can get:
 | 
						|
     //  * < DELTA rows (the initial buffer accumulation stage)
 | 
						|
     //  * = DELTA rows (settled state in the middle)
 | 
						|
     //  * > DELTA rows (then the input image is over, but we generate
 | 
						|
     //                  "virtual" rows using the border mode and filter them)
 | 
						|
     // this variable number of output rows is dy.
 | 
						|
     // dsty is the current output row.
 | 
						|
     // sptr is the pointer to the first input row in the portion to process
 | 
						|
     for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
 | 
						|
     {
 | 
						|
         Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
 | 
						|
         dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
 | 
						|
         if( dy > 0 )
 | 
						|
         {
 | 
						|
             Mat dstripe = dst.rowRange(dsty, dsty + dy);
 | 
						|
             add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
 | 
						|
         }
 | 
						|
     }
 | 
						|
 }
 | 
						|
 \endcode
 | 
						|
*/
 | 
						|
class CV_EXPORTS FilterEngine
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    FilterEngine();
 | 
						|
    //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
 | 
						|
    FilterEngine(const Ptr<BaseFilter>& _filter2D,
 | 
						|
                 const Ptr<BaseRowFilter>& _rowFilter,
 | 
						|
                 const Ptr<BaseColumnFilter>& _columnFilter,
 | 
						|
                 int srcType, int dstType, int bufType,
 | 
						|
                 int _rowBorderType=BORDER_REPLICATE,
 | 
						|
                 int _columnBorderType=-1,
 | 
						|
                 const Scalar& _borderValue=Scalar());
 | 
						|
    //! the destructor
 | 
						|
    virtual ~FilterEngine();
 | 
						|
    //! reinitializes the engine. The previously assigned filters are released.
 | 
						|
    void init(const Ptr<BaseFilter>& _filter2D,
 | 
						|
              const Ptr<BaseRowFilter>& _rowFilter,
 | 
						|
              const Ptr<BaseColumnFilter>& _columnFilter,
 | 
						|
              int srcType, int dstType, int bufType,
 | 
						|
              int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
 | 
						|
              const Scalar& _borderValue=Scalar());
 | 
						|
    //! starts filtering of the specified ROI of an image of size wholeSize.
 | 
						|
    virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
 | 
						|
    //! starts filtering of the specified ROI of the specified image.
 | 
						|
    virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
 | 
						|
                      bool isolated=false, int maxBufRows=-1);
 | 
						|
    //! processes the next srcCount rows of the image.
 | 
						|
    virtual int proceed(const uchar* src, int srcStep, int srcCount,
 | 
						|
                        uchar* dst, int dstStep);
 | 
						|
    //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
 | 
						|
    virtual void apply( const Mat& src, Mat& dst,
 | 
						|
                        const Rect& srcRoi=Rect(0,0,-1,-1),
 | 
						|
                        Point dstOfs=Point(0,0),
 | 
						|
                        bool isolated=false);
 | 
						|
    //! returns true if the filter is separable
 | 
						|
    bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
 | 
						|
    //! returns the number
 | 
						|
    int remainingInputRows() const;
 | 
						|
    int remainingOutputRows() const;
 | 
						|
 | 
						|
    int srcType, dstType, bufType;
 | 
						|
    Size ksize;
 | 
						|
    Point anchor;
 | 
						|
    int maxWidth;
 | 
						|
    Size wholeSize;
 | 
						|
    Rect roi;
 | 
						|
    int dx1, dx2;
 | 
						|
    int rowBorderType, columnBorderType;
 | 
						|
    vector<int> borderTab;
 | 
						|
    int borderElemSize;
 | 
						|
    vector<uchar> ringBuf;
 | 
						|
    vector<uchar> srcRow;
 | 
						|
    vector<uchar> constBorderValue;
 | 
						|
    vector<uchar> constBorderRow;
 | 
						|
    int bufStep, startY, startY0, endY, rowCount, dstY;
 | 
						|
    vector<uchar*> rows;
 | 
						|
 | 
						|
    Ptr<BaseFilter> filter2D;
 | 
						|
    Ptr<BaseRowFilter> rowFilter;
 | 
						|
    Ptr<BaseColumnFilter> columnFilter;
 | 
						|
};
 | 
						|
 | 
						|
//! type of the kernel
 | 
						|
enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
 | 
						|
       KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };
 | 
						|
 | 
						|
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
 | 
						|
CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);
 | 
						|
 | 
						|
//! returns the primitive row filter with the specified kernel
 | 
						|
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
 | 
						|
                                            InputArray kernel, int anchor,
 | 
						|
                                            int symmetryType);
 | 
						|
 | 
						|
//! returns the primitive column filter with the specified kernel
 | 
						|
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
 | 
						|
                                            InputArray kernel, int anchor,
 | 
						|
                                            int symmetryType, double delta=0,
 | 
						|
                                            int bits=0);
 | 
						|
 | 
						|
//! returns 2D filter with the specified kernel
 | 
						|
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
 | 
						|
                                           InputArray kernel,
 | 
						|
                                           Point anchor=Point(-1,-1),
 | 
						|
                                           double delta=0, int bits=0);
 | 
						|
 | 
						|
//! returns the separable linear filter engine
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
 | 
						|
                          InputArray rowKernel, InputArray columnKernel,
 | 
						|
                          Point anchor=Point(-1,-1), double delta=0,
 | 
						|
                          int rowBorderType=BORDER_DEFAULT,
 | 
						|
                          int columnBorderType=-1,
 | 
						|
                          const Scalar& borderValue=Scalar());
 | 
						|
 | 
						|
//! returns the non-separable linear filter engine
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
 | 
						|
                 InputArray kernel, Point _anchor=Point(-1,-1),
 | 
						|
                 double delta=0, int rowBorderType=BORDER_DEFAULT,
 | 
						|
                 int columnBorderType=-1, const Scalar& borderValue=Scalar());
 | 
						|
 | 
						|
//! returns the Gaussian kernel with the specified parameters
 | 
						|
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F );
 | 
						|
 | 
						|
//! returns the Gaussian filter engine
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
 | 
						|
                                    double sigma1, double sigma2=0,
 | 
						|
                                    int borderType=BORDER_DEFAULT);
 | 
						|
//! initializes kernels of the generalized Sobel operator
 | 
						|
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
 | 
						|
                                   int dx, int dy, int ksize,
 | 
						|
                                   bool normalize=false, int ktype=CV_32F );
 | 
						|
//! returns filter engine for the generalized Sobel operator
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
 | 
						|
                                        int dx, int dy, int ksize,
 | 
						|
                                        int borderType=BORDER_DEFAULT );
 | 
						|
//! returns horizontal 1D box filter
 | 
						|
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
 | 
						|
                                              int ksize, int anchor=-1);
 | 
						|
//! returns vertical 1D box filter
 | 
						|
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
 | 
						|
                                                     int ksize, int anchor=-1,
 | 
						|
                                                     double scale=1);
 | 
						|
//! returns box filter engine
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
 | 
						|
                                              Point anchor=Point(-1,-1),
 | 
						|
                                              bool normalize=true,
 | 
						|
                                              int borderType=BORDER_DEFAULT);
 | 
						|
 | 
						|
//! returns the Gabor kernel with the specified parameters
 | 
						|
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
 | 
						|
                                 double gamma, double psi=CV_PI*0.5, int ktype=CV_64F );
 | 
						|
 | 
						|
//! type of morphological operation
 | 
						|
enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE,
 | 
						|
       MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE,
 | 
						|
       MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT,
 | 
						|
       MORPH_BLACKHAT=CV_MOP_BLACKHAT, MORPH_HITMISS };
 | 
						|
 | 
						|
//! returns horizontal 1D morphological filter
 | 
						|
CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1);
 | 
						|
//! returns vertical 1D morphological filter
 | 
						|
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
 | 
						|
//! returns 2D morphological filter
 | 
						|
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel,
 | 
						|
                                               Point anchor=Point(-1,-1));
 | 
						|
 | 
						|
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
 | 
						|
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
 | 
						|
 | 
						|
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
 | 
						|
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
 | 
						|
                    Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT,
 | 
						|
                    int columnBorderType=-1,
 | 
						|
                    const Scalar& borderValue=morphologyDefaultBorderValue());
 | 
						|
 | 
						|
//! shape of the structuring element
 | 
						|
enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 };
 | 
						|
//! returns structuring element of the specified shape and size
 | 
						|
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1));
 | 
						|
 | 
						|
template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
 | 
						|
 | 
						|
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
 | 
						|
CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst,
 | 
						|
                                int top, int bottom, int left, int right,
 | 
						|
                                int borderType, const Scalar& value=Scalar() );
 | 
						|
 | 
						|
//! smooths the image using median filter.
 | 
						|
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
 | 
						|
//! smooths the image using Gaussian filter.
 | 
						|
CV_EXPORTS_W void GaussianBlur( InputArray src,
 | 
						|
                                               OutputArray dst, Size ksize,
 | 
						|
                                               double sigmaX, double sigmaY=0,
 | 
						|
                                               int borderType=BORDER_DEFAULT );
 | 
						|
//! smooths the image using bilateral filter
 | 
						|
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
 | 
						|
                                   double sigmaColor, double sigmaSpace,
 | 
						|
                                   int borderType=BORDER_DEFAULT );
 | 
						|
//! smooths the image using adaptive bilateral filter
 | 
						|
CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize,
 | 
						|
                                           double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1),
 | 
						|
                                           int borderType=BORDER_DEFAULT );
 | 
						|
//! smooths the image using the box filter. Each pixel is processed in O(1) time
 | 
						|
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                             Size ksize, Point anchor=Point(-1,-1),
 | 
						|
                             bool normalize=true,
 | 
						|
                             int borderType=BORDER_DEFAULT );
 | 
						|
//! a synonym for normalized box filter
 | 
						|
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
 | 
						|
                        Size ksize, Point anchor=Point(-1,-1),
 | 
						|
                        int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies non-separable 2D linear filter to the image
 | 
						|
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                            InputArray kernel, Point anchor=Point(-1,-1),
 | 
						|
                            double delta=0, int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies separable 2D linear filter to the image
 | 
						|
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                               InputArray kernelX, InputArray kernelY,
 | 
						|
                               Point anchor=Point(-1,-1),
 | 
						|
                               double delta=0, int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies generalized Sobel operator to the image
 | 
						|
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                         int dx, int dy, int ksize=3,
 | 
						|
                         double scale=1, double delta=0,
 | 
						|
                         int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies the vertical or horizontal Scharr operator to the image
 | 
						|
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                          int dx, int dy, double scale=1, double delta=0,
 | 
						|
                          int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies Laplacian operator to the image
 | 
						|
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
 | 
						|
                             int ksize=1, double scale=1, double delta=0,
 | 
						|
                             int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! applies Canny edge detector and produces the edge map.
 | 
						|
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
 | 
						|
                         double threshold1, double threshold2,
 | 
						|
                         int apertureSize=3, bool L2gradient=false );
 | 
						|
 | 
						|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
 | 
						|
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
 | 
						|
                                   int blockSize, int ksize=3,
 | 
						|
                                   int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! computes Harris cornerness criteria at each image pixel
 | 
						|
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
 | 
						|
                                int ksize, double k,
 | 
						|
                                int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
// low-level function for computing eigenvalues and eigenvectors of 2x2 matrices
 | 
						|
CV_EXPORTS void eigen2x2( const float* a, float* e, int n );
 | 
						|
 | 
						|
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix  at each pixel. The output is stored as 6-channel matrix.
 | 
						|
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
 | 
						|
                                          int blockSize, int ksize,
 | 
						|
                                          int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! computes another complex cornerness criteria at each pixel
 | 
						|
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
 | 
						|
                                   int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
 | 
						|
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
 | 
						|
                                Size winSize, Size zeroZone,
 | 
						|
                                TermCriteria criteria );
 | 
						|
 | 
						|
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
 | 
						|
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
 | 
						|
                                     int maxCorners, double qualityLevel, double minDistance,
 | 
						|
                                     InputArray mask=noArray(), int blockSize=3,
 | 
						|
                                     bool useHarrisDetector=false, double k=0.04 );
 | 
						|
 | 
						|
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
 | 
						|
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
 | 
						|
                              double rho, double theta, int threshold,
 | 
						|
                              double srn=0, double stn=0 );
 | 
						|
 | 
						|
//! finds line segments in the black-n-white image using probabilistic Hough transform
 | 
						|
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
 | 
						|
                               double rho, double theta, int threshold,
 | 
						|
                               double minLineLength=0, double maxLineGap=0 );
 | 
						|
 | 
						|
//! finds circles in the grayscale image using 2+1 gradient Hough transform
 | 
						|
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
 | 
						|
                               int method, double dp, double minDist,
 | 
						|
                               double param1=100, double param2=100,
 | 
						|
                               int minRadius=0, int maxRadius=0 );
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    GHT_POSITION = 0,
 | 
						|
    GHT_SCALE = 1,
 | 
						|
    GHT_ROTATION = 2
 | 
						|
};
 | 
						|
 | 
						|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
 | 
						|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
 | 
						|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
 | 
						|
class CV_EXPORTS GeneralizedHough : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    static Ptr<GeneralizedHough> create(int method);
 | 
						|
 | 
						|
    virtual ~GeneralizedHough();
 | 
						|
 | 
						|
    //! set template to search
 | 
						|
    void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
 | 
						|
    void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
 | 
						|
 | 
						|
    //! find template on image
 | 
						|
    void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
 | 
						|
    void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
 | 
						|
 | 
						|
    void release();
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
 | 
						|
    virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
 | 
						|
    virtual void releaseImpl() = 0;
 | 
						|
 | 
						|
private:
 | 
						|
    Mat edges_, dx_, dy_;
 | 
						|
};
 | 
						|
 | 
						|
//! erodes the image (applies the local minimum operator)
 | 
						|
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
 | 
						|
                         Point anchor=Point(-1,-1), int iterations=1,
 | 
						|
                         int borderType=BORDER_CONSTANT,
 | 
						|
                         const Scalar& borderValue=morphologyDefaultBorderValue() );
 | 
						|
 | 
						|
//! dilates the image (applies the local maximum operator)
 | 
						|
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
 | 
						|
                          Point anchor=Point(-1,-1), int iterations=1,
 | 
						|
                          int borderType=BORDER_CONSTANT,
 | 
						|
                          const Scalar& borderValue=morphologyDefaultBorderValue() );
 | 
						|
 | 
						|
//! applies an advanced morphological operation to the image
 | 
						|
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
 | 
						|
                                int op, InputArray kernel,
 | 
						|
                                Point anchor=Point(-1,-1), int iterations=1,
 | 
						|
                                int borderType=BORDER_CONSTANT,
 | 
						|
                                const Scalar& borderValue=morphologyDefaultBorderValue() );
 | 
						|
 | 
						|
//! interpolation algorithm
 | 
						|
enum
 | 
						|
{
 | 
						|
    INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation
 | 
						|
    INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation
 | 
						|
    INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation
 | 
						|
    INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation
 | 
						|
    INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood
 | 
						|
    INTER_MAX=7,
 | 
						|
    WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP
 | 
						|
};
 | 
						|
 | 
						|
//! resizes the image
 | 
						|
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
 | 
						|
                          Size dsize, double fx=0, double fy=0,
 | 
						|
                          int interpolation=INTER_LINEAR );
 | 
						|
 | 
						|
//! warps the image using affine transformation
 | 
						|
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
 | 
						|
                              InputArray M, Size dsize,
 | 
						|
                              int flags=INTER_LINEAR,
 | 
						|
                              int borderMode=BORDER_CONSTANT,
 | 
						|
                              const Scalar& borderValue=Scalar());
 | 
						|
 | 
						|
//! warps the image using perspective transformation
 | 
						|
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
 | 
						|
                                   InputArray M, Size dsize,
 | 
						|
                                   int flags=INTER_LINEAR,
 | 
						|
                                   int borderMode=BORDER_CONSTANT,
 | 
						|
                                   const Scalar& borderValue=Scalar());
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
 | 
						|
    INTER_TAB_SIZE=(1<<INTER_BITS),
 | 
						|
    INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE
 | 
						|
};
 | 
						|
 | 
						|
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
 | 
						|
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
 | 
						|
                         InputArray map1, InputArray map2,
 | 
						|
                         int interpolation, int borderMode=BORDER_CONSTANT,
 | 
						|
                         const Scalar& borderValue=Scalar());
 | 
						|
 | 
						|
//! converts maps for remap from floating-point to fixed-point format or backwards
 | 
						|
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
 | 
						|
                               OutputArray dstmap1, OutputArray dstmap2,
 | 
						|
                               int dstmap1type, bool nninterpolation=false );
 | 
						|
 | 
						|
//! returns 2x3 affine transformation matrix for the planar rotation.
 | 
						|
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
 | 
						|
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
 | 
						|
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
 | 
						|
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
 | 
						|
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
 | 
						|
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
 | 
						|
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
 | 
						|
 | 
						|
CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
 | 
						|
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
 | 
						|
 | 
						|
//! extracts rectangle from the image at sub-pixel location
 | 
						|
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
 | 
						|
                                 Point2f center, OutputArray patch, int patchType=-1 );
 | 
						|
 | 
						|
//! computes the integral image
 | 
						|
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth=-1 );
 | 
						|
 | 
						|
//! computes the integral image and integral for the squared image
 | 
						|
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
 | 
						|
                                        OutputArray sqsum, int sdepth=-1 );
 | 
						|
//! computes the integral image, integral for the squared image and the tilted integral image
 | 
						|
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
 | 
						|
                                        OutputArray sqsum, OutputArray tilted,
 | 
						|
                                        int sdepth=-1 );
 | 
						|
 | 
						|
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
 | 
						|
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
 | 
						|
                              InputArray mask=noArray() );
 | 
						|
//! adds squared src image to the accumulator (dst += src*src).
 | 
						|
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
 | 
						|
                                    InputArray mask=noArray() );
 | 
						|
//! adds product of the 2 images to the accumulator (dst += src1*src2).
 | 
						|
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
 | 
						|
                                     InputOutputArray dst, InputArray mask=noArray() );
 | 
						|
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
 | 
						|
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
 | 
						|
                                      double alpha, InputArray mask=noArray() );
 | 
						|
 | 
						|
//! computes PSNR image/video quality metric
 | 
						|
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
 | 
						|
 | 
						|
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
 | 
						|
                                  InputArray window = noArray());
 | 
						|
CV_EXPORTS_W Point2d phaseCorrelateRes(InputArray src1, InputArray src2,
 | 
						|
                                    InputArray window, CV_OUT double* response = 0);
 | 
						|
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
 | 
						|
 | 
						|
//! type of the threshold operation
 | 
						|
enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
 | 
						|
       THRESH_TRUNC=CV_THRESH_TRUNC, THRESH_TOZERO=CV_THRESH_TOZERO,
 | 
						|
       THRESH_TOZERO_INV=CV_THRESH_TOZERO_INV, THRESH_MASK=CV_THRESH_MASK,
 | 
						|
       THRESH_OTSU=CV_THRESH_OTSU };
 | 
						|
 | 
						|
//! applies fixed threshold to the image
 | 
						|
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
 | 
						|
                               double thresh, double maxval, int type );
 | 
						|
 | 
						|
//! adaptive threshold algorithm
 | 
						|
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
 | 
						|
 | 
						|
//! applies variable (adaptive) threshold to the image
 | 
						|
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
 | 
						|
                                     double maxValue, int adaptiveMethod,
 | 
						|
                                     int thresholdType, int blockSize, double C );
 | 
						|
 | 
						|
//! smooths and downsamples the image
 | 
						|
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
 | 
						|
                           const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
 | 
						|
//! upsamples and smoothes the image
 | 
						|
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
 | 
						|
                         const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! builds the gaussian pyramid using pyrDown() as a basic operation
 | 
						|
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
 | 
						|
                              int maxlevel, int borderType=BORDER_DEFAULT );
 | 
						|
 | 
						|
//! corrects lens distortion for the given camera matrix and distortion coefficients
 | 
						|
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
 | 
						|
                             InputArray cameraMatrix,
 | 
						|
                             InputArray distCoeffs,
 | 
						|
                             InputArray newCameraMatrix=noArray() );
 | 
						|
 | 
						|
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
 | 
						|
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
 | 
						|
                           InputArray R, InputArray newCameraMatrix,
 | 
						|
                           Size size, int m1type, OutputArray map1, OutputArray map2 );
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    PROJ_SPHERICAL_ORTHO = 0,
 | 
						|
    PROJ_SPHERICAL_EQRECT = 1
 | 
						|
};
 | 
						|
 | 
						|
//! initializes maps for cv::remap() for wide-angle
 | 
						|
CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
 | 
						|
                                         Size imageSize, int destImageWidth,
 | 
						|
                                         int m1type, OutputArray map1, OutputArray map2,
 | 
						|
                                         int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
 | 
						|
 | 
						|
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
 | 
						|
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize=Size(),
 | 
						|
                                            bool centerPrincipalPoint=false );
 | 
						|
 | 
						|
//! returns points' coordinates after lens distortion correction
 | 
						|
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
 | 
						|
                                   InputArray cameraMatrix, InputArray distCoeffs,
 | 
						|
                                   InputArray R=noArray(), InputArray P=noArray());
 | 
						|
 | 
						|
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
 | 
						|
 | 
						|
//! computes the joint dense histogram for a set of images.
 | 
						|
CV_EXPORTS void calcHist( const Mat* images, int nimages,
 | 
						|
                          const int* channels, InputArray mask,
 | 
						|
                          OutputArray hist, int dims, const int* histSize,
 | 
						|
                          const float** ranges, bool uniform=true, bool accumulate=false );
 | 
						|
 | 
						|
//! computes the joint sparse histogram for a set of images.
 | 
						|
CV_EXPORTS void calcHist( const Mat* images, int nimages,
 | 
						|
                          const int* channels, InputArray mask,
 | 
						|
                          SparseMat& hist, int dims,
 | 
						|
                          const int* histSize, const float** ranges,
 | 
						|
                          bool uniform=true, bool accumulate=false );
 | 
						|
 | 
						|
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
 | 
						|
                            const vector<int>& channels,
 | 
						|
                            InputArray mask, OutputArray hist,
 | 
						|
                            const vector<int>& histSize,
 | 
						|
                            const vector<float>& ranges,
 | 
						|
                            bool accumulate=false );
 | 
						|
 | 
						|
//! computes back projection for the set of images
 | 
						|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
 | 
						|
                                 const int* channels, InputArray hist,
 | 
						|
                                 OutputArray backProject, const float** ranges,
 | 
						|
                                 double scale=1, bool uniform=true );
 | 
						|
 | 
						|
//! computes back projection for the set of images
 | 
						|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
 | 
						|
                                 const int* channels, const SparseMat& hist,
 | 
						|
                                 OutputArray backProject, const float** ranges,
 | 
						|
                                 double scale=1, bool uniform=true );
 | 
						|
 | 
						|
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const vector<int>& channels,
 | 
						|
                                   InputArray hist, OutputArray dst,
 | 
						|
                                   const vector<float>& ranges,
 | 
						|
                                   double scale );
 | 
						|
 | 
						|
/*CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels,
 | 
						|
                                      InputArray hist, OutputArray dst, Size patchSize,
 | 
						|
                                      int method, double factor=1 );
 | 
						|
 | 
						|
CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const vector<int>& channels,
 | 
						|
                                        InputArray hist, OutputArray dst, Size patchSize,
 | 
						|
                                        int method, double factor=1 );*/
 | 
						|
 | 
						|
//! compares two histograms stored in dense arrays
 | 
						|
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
 | 
						|
 | 
						|
//! compares two histograms stored in sparse arrays
 | 
						|
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
 | 
						|
 | 
						|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
 | 
						|
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
 | 
						|
 | 
						|
class CV_EXPORTS_W CLAHE : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
 | 
						|
    CV_WRAP virtual double getClipLimit() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
 | 
						|
    CV_WRAP virtual Size getTilesGridSize() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void collectGarbage() = 0;
 | 
						|
};
 | 
						|
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
 | 
						|
 | 
						|
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
 | 
						|
                      int distType, InputArray cost=noArray(),
 | 
						|
                      float* lowerBound=0, OutputArray flow=noArray() );
 | 
						|
 | 
						|
//! segments the image using watershed algorithm
 | 
						|
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
 | 
						|
 | 
						|
//! filters image using meanshift algorithm
 | 
						|
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
 | 
						|
                                         double sp, double sr, int maxLevel=1,
 | 
						|
                                         TermCriteria termcrit=TermCriteria(
 | 
						|
                                            TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
 | 
						|
 | 
						|
//! class of the pixel in GrabCut algorithm
 | 
						|
enum
 | 
						|
{
 | 
						|
    GC_BGD    = 0,  //!< background
 | 
						|
    GC_FGD    = 1,  //!< foreground
 | 
						|
    GC_PR_BGD = 2,  //!< most probably background
 | 
						|
    GC_PR_FGD = 3   //!< most probably foreground
 | 
						|
};
 | 
						|
 | 
						|
//! GrabCut algorithm flags
 | 
						|
enum
 | 
						|
{
 | 
						|
    GC_INIT_WITH_RECT  = 0,
 | 
						|
    GC_INIT_WITH_MASK  = 1,
 | 
						|
    GC_EVAL            = 2
 | 
						|
};
 | 
						|
 | 
						|
//! segments the image using GrabCut algorithm
 | 
						|
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
 | 
						|
                           InputOutputArray bgdModel, InputOutputArray fgdModel,
 | 
						|
                           int iterCount, int mode = GC_EVAL );
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    DIST_LABEL_CCOMP = 0,
 | 
						|
    DIST_LABEL_PIXEL = 1
 | 
						|
};
 | 
						|
 | 
						|
//! builds the discrete Voronoi diagram
 | 
						|
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
 | 
						|
                                     OutputArray labels, int distanceType, int maskSize,
 | 
						|
                                     int labelType=DIST_LABEL_CCOMP );
 | 
						|
 | 
						|
//! computes the distance transform map
 | 
						|
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
 | 
						|
                                     int distanceType, int maskSize );
 | 
						|
 | 
						|
enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 };
 | 
						|
 | 
						|
//! fills the semi-uniform image region starting from the specified seed point
 | 
						|
CV_EXPORTS int floodFill( InputOutputArray image,
 | 
						|
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
 | 
						|
                          Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
 | 
						|
                          int flags=4 );
 | 
						|
 | 
						|
//! fills the semi-uniform image region and/or the mask starting from the specified seed point
 | 
						|
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
 | 
						|
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
 | 
						|
                            Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
 | 
						|
                            int flags=4 );
 | 
						|
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    COLOR_BGR2BGRA    =0,
 | 
						|
    COLOR_RGB2RGBA    =COLOR_BGR2BGRA,
 | 
						|
 | 
						|
    COLOR_BGRA2BGR    =1,
 | 
						|
    COLOR_RGBA2RGB    =COLOR_BGRA2BGR,
 | 
						|
 | 
						|
    COLOR_BGR2RGBA    =2,
 | 
						|
    COLOR_RGB2BGRA    =COLOR_BGR2RGBA,
 | 
						|
 | 
						|
    COLOR_RGBA2BGR    =3,
 | 
						|
    COLOR_BGRA2RGB    =COLOR_RGBA2BGR,
 | 
						|
 | 
						|
    COLOR_BGR2RGB     =4,
 | 
						|
    COLOR_RGB2BGR     =COLOR_BGR2RGB,
 | 
						|
 | 
						|
    COLOR_BGRA2RGBA   =5,
 | 
						|
    COLOR_RGBA2BGRA   =COLOR_BGRA2RGBA,
 | 
						|
 | 
						|
    COLOR_BGR2GRAY    =6,
 | 
						|
    COLOR_RGB2GRAY    =7,
 | 
						|
    COLOR_GRAY2BGR    =8,
 | 
						|
    COLOR_GRAY2RGB    =COLOR_GRAY2BGR,
 | 
						|
    COLOR_GRAY2BGRA   =9,
 | 
						|
    COLOR_GRAY2RGBA   =COLOR_GRAY2BGRA,
 | 
						|
    COLOR_BGRA2GRAY   =10,
 | 
						|
    COLOR_RGBA2GRAY   =11,
 | 
						|
 | 
						|
    COLOR_BGR2BGR565  =12,
 | 
						|
    COLOR_RGB2BGR565  =13,
 | 
						|
    COLOR_BGR5652BGR  =14,
 | 
						|
    COLOR_BGR5652RGB  =15,
 | 
						|
    COLOR_BGRA2BGR565 =16,
 | 
						|
    COLOR_RGBA2BGR565 =17,
 | 
						|
    COLOR_BGR5652BGRA =18,
 | 
						|
    COLOR_BGR5652RGBA =19,
 | 
						|
 | 
						|
    COLOR_GRAY2BGR565 =20,
 | 
						|
    COLOR_BGR5652GRAY =21,
 | 
						|
 | 
						|
    COLOR_BGR2BGR555  =22,
 | 
						|
    COLOR_RGB2BGR555  =23,
 | 
						|
    COLOR_BGR5552BGR  =24,
 | 
						|
    COLOR_BGR5552RGB  =25,
 | 
						|
    COLOR_BGRA2BGR555 =26,
 | 
						|
    COLOR_RGBA2BGR555 =27,
 | 
						|
    COLOR_BGR5552BGRA =28,
 | 
						|
    COLOR_BGR5552RGBA =29,
 | 
						|
 | 
						|
    COLOR_GRAY2BGR555 =30,
 | 
						|
    COLOR_BGR5552GRAY =31,
 | 
						|
 | 
						|
    COLOR_BGR2XYZ     =32,
 | 
						|
    COLOR_RGB2XYZ     =33,
 | 
						|
    COLOR_XYZ2BGR     =34,
 | 
						|
    COLOR_XYZ2RGB     =35,
 | 
						|
 | 
						|
    COLOR_BGR2YCrCb   =36,
 | 
						|
    COLOR_RGB2YCrCb   =37,
 | 
						|
    COLOR_YCrCb2BGR   =38,
 | 
						|
    COLOR_YCrCb2RGB   =39,
 | 
						|
 | 
						|
    COLOR_BGR2HSV     =40,
 | 
						|
    COLOR_RGB2HSV     =41,
 | 
						|
 | 
						|
    COLOR_BGR2Lab     =44,
 | 
						|
    COLOR_RGB2Lab     =45,
 | 
						|
 | 
						|
    COLOR_BayerBG2BGR =46,
 | 
						|
    COLOR_BayerGB2BGR =47,
 | 
						|
    COLOR_BayerRG2BGR =48,
 | 
						|
    COLOR_BayerGR2BGR =49,
 | 
						|
 | 
						|
    COLOR_BayerBG2RGB =COLOR_BayerRG2BGR,
 | 
						|
    COLOR_BayerGB2RGB =COLOR_BayerGR2BGR,
 | 
						|
    COLOR_BayerRG2RGB =COLOR_BayerBG2BGR,
 | 
						|
    COLOR_BayerGR2RGB =COLOR_BayerGB2BGR,
 | 
						|
 | 
						|
    COLOR_BGR2Luv     =50,
 | 
						|
    COLOR_RGB2Luv     =51,
 | 
						|
    COLOR_BGR2HLS     =52,
 | 
						|
    COLOR_RGB2HLS     =53,
 | 
						|
 | 
						|
    COLOR_HSV2BGR     =54,
 | 
						|
    COLOR_HSV2RGB     =55,
 | 
						|
 | 
						|
    COLOR_Lab2BGR     =56,
 | 
						|
    COLOR_Lab2RGB     =57,
 | 
						|
    COLOR_Luv2BGR     =58,
 | 
						|
    COLOR_Luv2RGB     =59,
 | 
						|
    COLOR_HLS2BGR     =60,
 | 
						|
    COLOR_HLS2RGB     =61,
 | 
						|
 | 
						|
    COLOR_BayerBG2BGR_VNG =62,
 | 
						|
    COLOR_BayerGB2BGR_VNG =63,
 | 
						|
    COLOR_BayerRG2BGR_VNG =64,
 | 
						|
    COLOR_BayerGR2BGR_VNG =65,
 | 
						|
 | 
						|
    COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG,
 | 
						|
    COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG,
 | 
						|
    COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG,
 | 
						|
    COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG,
 | 
						|
 | 
						|
    COLOR_BGR2HSV_FULL = 66,
 | 
						|
    COLOR_RGB2HSV_FULL = 67,
 | 
						|
    COLOR_BGR2HLS_FULL = 68,
 | 
						|
    COLOR_RGB2HLS_FULL = 69,
 | 
						|
 | 
						|
    COLOR_HSV2BGR_FULL = 70,
 | 
						|
    COLOR_HSV2RGB_FULL = 71,
 | 
						|
    COLOR_HLS2BGR_FULL = 72,
 | 
						|
    COLOR_HLS2RGB_FULL = 73,
 | 
						|
 | 
						|
    COLOR_LBGR2Lab     = 74,
 | 
						|
    COLOR_LRGB2Lab     = 75,
 | 
						|
    COLOR_LBGR2Luv     = 76,
 | 
						|
    COLOR_LRGB2Luv     = 77,
 | 
						|
 | 
						|
    COLOR_Lab2LBGR     = 78,
 | 
						|
    COLOR_Lab2LRGB     = 79,
 | 
						|
    COLOR_Luv2LBGR     = 80,
 | 
						|
    COLOR_Luv2LRGB     = 81,
 | 
						|
 | 
						|
    COLOR_BGR2YUV      = 82,
 | 
						|
    COLOR_RGB2YUV      = 83,
 | 
						|
    COLOR_YUV2BGR      = 84,
 | 
						|
    COLOR_YUV2RGB      = 85,
 | 
						|
 | 
						|
    COLOR_BayerBG2GRAY = 86,
 | 
						|
    COLOR_BayerGB2GRAY = 87,
 | 
						|
    COLOR_BayerRG2GRAY = 88,
 | 
						|
    COLOR_BayerGR2GRAY = 89,
 | 
						|
 | 
						|
    //YUV 4:2:0 formats family
 | 
						|
    COLOR_YUV2RGB_NV12 = 90,
 | 
						|
    COLOR_YUV2BGR_NV12 = 91,
 | 
						|
    COLOR_YUV2RGB_NV21 = 92,
 | 
						|
    COLOR_YUV2BGR_NV21 = 93,
 | 
						|
    COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
 | 
						|
    COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
 | 
						|
 | 
						|
    COLOR_YUV2RGBA_NV12 = 94,
 | 
						|
    COLOR_YUV2BGRA_NV12 = 95,
 | 
						|
    COLOR_YUV2RGBA_NV21 = 96,
 | 
						|
    COLOR_YUV2BGRA_NV21 = 97,
 | 
						|
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
 | 
						|
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
 | 
						|
 | 
						|
    COLOR_YUV2RGB_YV12 = 98,
 | 
						|
    COLOR_YUV2BGR_YV12 = 99,
 | 
						|
    COLOR_YUV2RGB_IYUV = 100,
 | 
						|
    COLOR_YUV2BGR_IYUV = 101,
 | 
						|
    COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
 | 
						|
    COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
 | 
						|
    COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
 | 
						|
    COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
 | 
						|
 | 
						|
    COLOR_YUV2RGBA_YV12 = 102,
 | 
						|
    COLOR_YUV2BGRA_YV12 = 103,
 | 
						|
    COLOR_YUV2RGBA_IYUV = 104,
 | 
						|
    COLOR_YUV2BGRA_IYUV = 105,
 | 
						|
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
 | 
						|
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
 | 
						|
    COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
 | 
						|
    COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
 | 
						|
 | 
						|
    COLOR_YUV2GRAY_420 = 106,
 | 
						|
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
 | 
						|
    COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
 | 
						|
 | 
						|
    //YUV 4:2:2 formats family
 | 
						|
    COLOR_YUV2RGB_UYVY = 107,
 | 
						|
    COLOR_YUV2BGR_UYVY = 108,
 | 
						|
    //COLOR_YUV2RGB_VYUY = 109,
 | 
						|
    //COLOR_YUV2BGR_VYUY = 110,
 | 
						|
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
 | 
						|
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
 | 
						|
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
 | 
						|
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
 | 
						|
 | 
						|
    COLOR_YUV2RGBA_UYVY = 111,
 | 
						|
    COLOR_YUV2BGRA_UYVY = 112,
 | 
						|
    //COLOR_YUV2RGBA_VYUY = 113,
 | 
						|
    //COLOR_YUV2BGRA_VYUY = 114,
 | 
						|
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
 | 
						|
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
 | 
						|
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
 | 
						|
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
 | 
						|
 | 
						|
    COLOR_YUV2RGB_YUY2 = 115,
 | 
						|
    COLOR_YUV2BGR_YUY2 = 116,
 | 
						|
    COLOR_YUV2RGB_YVYU = 117,
 | 
						|
    COLOR_YUV2BGR_YVYU = 118,
 | 
						|
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
 | 
						|
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
 | 
						|
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
 | 
						|
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
 | 
						|
 | 
						|
    COLOR_YUV2RGBA_YUY2 = 119,
 | 
						|
    COLOR_YUV2BGRA_YUY2 = 120,
 | 
						|
    COLOR_YUV2RGBA_YVYU = 121,
 | 
						|
    COLOR_YUV2BGRA_YVYU = 122,
 | 
						|
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
 | 
						|
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
 | 
						|
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
 | 
						|
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
 | 
						|
 | 
						|
    COLOR_YUV2GRAY_UYVY = 123,
 | 
						|
    COLOR_YUV2GRAY_YUY2 = 124,
 | 
						|
    //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY,
 | 
						|
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
 | 
						|
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
 | 
						|
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
 | 
						|
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
 | 
						|
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
 | 
						|
 | 
						|
    // alpha premultiplication
 | 
						|
    COLOR_RGBA2mRGBA = 125,
 | 
						|
    COLOR_mRGBA2RGBA = 126,
 | 
						|
 | 
						|
    COLOR_RGB2YUV_I420 = 127,
 | 
						|
    COLOR_BGR2YUV_I420 = 128,
 | 
						|
    COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
 | 
						|
    COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
 | 
						|
 | 
						|
    COLOR_RGBA2YUV_I420 = 129,
 | 
						|
    COLOR_BGRA2YUV_I420 = 130,
 | 
						|
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
 | 
						|
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
 | 
						|
    COLOR_RGB2YUV_YV12  = 131,
 | 
						|
    COLOR_BGR2YUV_YV12  = 132,
 | 
						|
    COLOR_RGBA2YUV_YV12 = 133,
 | 
						|
    COLOR_BGRA2YUV_YV12 = 134,
 | 
						|
 | 
						|
    COLOR_COLORCVT_MAX  = 135
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//! converts image from one color space to another
 | 
						|
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 );
 | 
						|
 | 
						|
//! raster image moments
 | 
						|
class CV_EXPORTS_W_MAP Moments
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    Moments();
 | 
						|
    //! the full constructor
 | 
						|
    Moments(double m00, double m10, double m01, double m20, double m11,
 | 
						|
            double m02, double m30, double m21, double m12, double m03 );
 | 
						|
    //! the conversion from CvMoments
 | 
						|
    Moments( const CvMoments& moments );
 | 
						|
    //! the conversion to CvMoments
 | 
						|
    operator CvMoments() const;
 | 
						|
 | 
						|
    //! spatial moments
 | 
						|
    CV_PROP_RW double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
 | 
						|
    //! central moments
 | 
						|
    CV_PROP_RW double  mu20, mu11, mu02, mu30, mu21, mu12, mu03;
 | 
						|
    //! central normalized moments
 | 
						|
    CV_PROP_RW double  nu20, nu11, nu02, nu30, nu21, nu12, nu03;
 | 
						|
};
 | 
						|
 | 
						|
//! computes moments of the rasterized shape or a vector of points
 | 
						|
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false );
 | 
						|
 | 
						|
//! computes 7 Hu invariants from the moments
 | 
						|
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
 | 
						|
CV_EXPORTS_W void HuMoments( const Moments& m, CV_OUT OutputArray hu );
 | 
						|
 | 
						|
//! type of the template matching operation
 | 
						|
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
 | 
						|
 | 
						|
//! computes the proximity map for the raster template and the image where the template is searched for
 | 
						|
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
 | 
						|
                                 OutputArray result, int method );
 | 
						|
 | 
						|
//! mode of the contour retrieval algorithm
 | 
						|
enum
 | 
						|
{
 | 
						|
    RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours
 | 
						|
    RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information
 | 
						|
    RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested)
 | 
						|
    RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy
 | 
						|
    RETR_FLOODFILL=CV_RETR_FLOODFILL
 | 
						|
};
 | 
						|
 | 
						|
//! the contour approximation algorithm
 | 
						|
enum
 | 
						|
{
 | 
						|
    CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE,
 | 
						|
    CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
 | 
						|
    CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
 | 
						|
    CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
 | 
						|
};
 | 
						|
 | 
						|
//! retrieves contours and the hierarchical information from black-n-white image.
 | 
						|
CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
 | 
						|
                              OutputArray hierarchy, int mode,
 | 
						|
                              int method, Point offset=Point());
 | 
						|
 | 
						|
//! retrieves contours from black-n-white image.
 | 
						|
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
 | 
						|
                              int mode, int method, Point offset=Point());
 | 
						|
 | 
						|
//! draws contours in the image
 | 
						|
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
 | 
						|
                              int contourIdx, const Scalar& color,
 | 
						|
                              int thickness=1, int lineType=8,
 | 
						|
                              InputArray hierarchy=noArray(),
 | 
						|
                              int maxLevel=INT_MAX, Point offset=Point() );
 | 
						|
 | 
						|
//! approximates contour or a curve using Douglas-Peucker algorithm
 | 
						|
CV_EXPORTS_W void approxPolyDP( InputArray curve,
 | 
						|
                                OutputArray approxCurve,
 | 
						|
                                double epsilon, bool closed );
 | 
						|
 | 
						|
//! computes the contour perimeter (closed=true) or a curve length
 | 
						|
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
 | 
						|
//! computes the bounding rectangle for a contour
 | 
						|
CV_EXPORTS_W Rect boundingRect( InputArray points );
 | 
						|
//! computes the contour area
 | 
						|
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false );
 | 
						|
//! computes the minimal rotated rectangle for a set of points
 | 
						|
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
 | 
						|
//! computes the minimal enclosing circle for a set of points
 | 
						|
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
 | 
						|
                                      CV_OUT Point2f& center, CV_OUT float& radius );
 | 
						|
//! matches two contours using one of the available algorithms
 | 
						|
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
 | 
						|
                                 int method, double parameter );
 | 
						|
//! computes convex hull for a set of 2D points.
 | 
						|
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
 | 
						|
                              bool clockwise=false, bool returnPoints=true );
 | 
						|
//! computes the contour convexity defects
 | 
						|
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
 | 
						|
 | 
						|
//! returns true if the contour is convex. Does not support contours with self-intersection
 | 
						|
CV_EXPORTS_W bool isContourConvex( InputArray contour );
 | 
						|
 | 
						|
//! finds intersection of two convex polygons
 | 
						|
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
 | 
						|
                                          OutputArray _p12, bool handleNested=true );
 | 
						|
 | 
						|
//! fits ellipse to the set of 2D points
 | 
						|
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
 | 
						|
 | 
						|
//! fits line to the set of 2D points using M-estimator algorithm
 | 
						|
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
 | 
						|
                           double param, double reps, double aeps );
 | 
						|
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
 | 
						|
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
 | 
						|
 | 
						|
 | 
						|
class CV_EXPORTS_W Subdiv2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        PTLOC_ERROR = -2,
 | 
						|
        PTLOC_OUTSIDE_RECT = -1,
 | 
						|
        PTLOC_INSIDE = 0,
 | 
						|
        PTLOC_VERTEX = 1,
 | 
						|
        PTLOC_ON_EDGE = 2
 | 
						|
    };
 | 
						|
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        NEXT_AROUND_ORG   = 0x00,
 | 
						|
        NEXT_AROUND_DST   = 0x22,
 | 
						|
        PREV_AROUND_ORG   = 0x11,
 | 
						|
        PREV_AROUND_DST   = 0x33,
 | 
						|
        NEXT_AROUND_LEFT  = 0x13,
 | 
						|
        NEXT_AROUND_RIGHT = 0x31,
 | 
						|
        PREV_AROUND_LEFT  = 0x20,
 | 
						|
        PREV_AROUND_RIGHT = 0x02
 | 
						|
    };
 | 
						|
 | 
						|
    CV_WRAP Subdiv2D();
 | 
						|
    CV_WRAP Subdiv2D(Rect rect);
 | 
						|
    CV_WRAP void initDelaunay(Rect rect);
 | 
						|
 | 
						|
    CV_WRAP int insert(Point2f pt);
 | 
						|
    CV_WRAP void insert(const vector<Point2f>& ptvec);
 | 
						|
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
 | 
						|
 | 
						|
    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0);
 | 
						|
    CV_WRAP void getEdgeList(CV_OUT vector<Vec4f>& edgeList) const;
 | 
						|
    CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList) const;
 | 
						|
    CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList,
 | 
						|
                                     CV_OUT vector<Point2f>& facetCenters);
 | 
						|
 | 
						|
    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const;
 | 
						|
 | 
						|
    CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
 | 
						|
    CV_WRAP int nextEdge(int edge) const;
 | 
						|
    CV_WRAP int rotateEdge(int edge, int rotate) const;
 | 
						|
    CV_WRAP int symEdge(int edge) const;
 | 
						|
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const;
 | 
						|
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const;
 | 
						|
 | 
						|
protected:
 | 
						|
    int newEdge();
 | 
						|
    void deleteEdge(int edge);
 | 
						|
    int newPoint(Point2f pt, bool isvirtual, int firstEdge=0);
 | 
						|
    void deletePoint(int vtx);
 | 
						|
    void setEdgePoints( int edge, int orgPt, int dstPt );
 | 
						|
    void splice( int edgeA, int edgeB );
 | 
						|
    int connectEdges( int edgeA, int edgeB );
 | 
						|
    void swapEdges( int edge );
 | 
						|
    int isRightOf(Point2f pt, int edge) const;
 | 
						|
    void calcVoronoi();
 | 
						|
    void clearVoronoi();
 | 
						|
    void checkSubdiv() const;
 | 
						|
 | 
						|
    struct CV_EXPORTS Vertex
 | 
						|
    {
 | 
						|
        Vertex();
 | 
						|
        Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
 | 
						|
        bool isvirtual() const;
 | 
						|
        bool isfree() const;
 | 
						|
        int firstEdge;
 | 
						|
        int type;
 | 
						|
        Point2f pt;
 | 
						|
    };
 | 
						|
    struct CV_EXPORTS QuadEdge
 | 
						|
    {
 | 
						|
        QuadEdge();
 | 
						|
        QuadEdge(int edgeidx);
 | 
						|
        bool isfree() const;
 | 
						|
        int next[4];
 | 
						|
        int pt[4];
 | 
						|
    };
 | 
						|
 | 
						|
    vector<Vertex> vtx;
 | 
						|
    vector<QuadEdge> qedges;
 | 
						|
    int freeQEdge;
 | 
						|
    int freePoint;
 | 
						|
    bool validGeometry;
 | 
						|
 | 
						|
    int recentEdge;
 | 
						|
    Point2f topLeft;
 | 
						|
    Point2f bottomRight;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif /* __cplusplus */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* End of file. */
 | 
						|
 |