dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

42 lines
2.0 KiB

# kernel8_batched_gmem.s from https://seb-v.github.io/optimization/update/2025/01/20/Fast-GPU-Matrix-multiplication.html
# sudo PATH=/opt/homebrew/Cellar/llvm/20.1.6/bin:$PATH AMD_LLVM=0 AMD=1 DEBUG=2 python3 extra/gemm/amd_matmul.py
import pathlib
from dataclasses import replace
from tinygrad import Tensor, Device, Context, GlobalCounters
from tinygrad.helpers import getenv
from tinygrad.engine.realize import CompiledRunner, ExecItem, get_program
N = 4096
run_count = 5
if __name__ == "__main__":
ast = (Tensor.empty(N, N)@Tensor.empty(N, N)).schedule()[-1].ast
prg = get_program(ast, Device.default.renderer)
if getenv("ASM") == 1:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel8_batched_gmem.s").read_text()
prgfast = replace(prg, name="kernel", src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])
elif getenv("ASM") == -1:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel3_registers.cpp").read_text()
prgfast = replace(prg, name="kernel3_registers", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
elif getenv("ASM") == -2:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel4_gmem_df.cpp").read_text()
prgfast = replace(prg, name="kernel4_gmem_db", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
else:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel5_lds_optim.cpp").read_text()
prgfast = replace(prg, name="kernel5_lds_optim", src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])
runner = CompiledRunner(prgfast)
a = Tensor.randn(N, N).realize()
b = Tensor.randn(N, N).realize()
c = Tensor.zeros(N, N).contiguous().realize()
GlobalCounters.reset()
with Context(DEBUG=2):
for _ in range(run_count): tc = (a@b).realize()
GlobalCounters.reset()
ei = ExecItem(runner, [a.uop.buffer, b.uop.buffer, c.uop.buffer])
with Context(DEBUG=2):
for _ in range(run_count): ei.run(wait=True)
print(f"custom {(c-tc).square().mean().item()}")