You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							252 lines
						
					
					
						
							8.7 KiB
						
					
					
				
			
		
		
	
	
							252 lines
						
					
					
						
							8.7 KiB
						
					
					
				| # pylint: skip-file
 | |
| import abc
 | |
| import numpy as np
 | |
| # The EKF class contains the framework for an Extended Kalman Filter, but must be subclassed to use.
 | |
| # A subclass must implement:
 | |
| #   1) calc_transfer_fun(); see bottom of file for more info.
 | |
| #   2) __init__() to initialize self.state, self.covar, and self.process_noise appropriately
 | |
| 
 | |
| # Alternatively, the existing implementations of EKF can be used (e.g. EKF2D)
 | |
| 
 | |
| # Sensor classes are optionally used to pass measurement information into the EKF, to keep
 | |
| #   sensor parameters and processing methods for a each sensor together.
 | |
| # Sensor classes have a read() method which takes raw sensor data and returns
 | |
| #   a SensorReading object, which can be passed to the EKF update() method.
 | |
| 
 | |
| # For usage, see run_ekf1d.py in selfdrive/new for a simple example.
 | |
| # ekf.predict(dt) should be called between update cycles with the time since it was last called.
 | |
| # Ideally, predict(dt) should be called at a relatively constant rate.
 | |
| # update() should be called once per sensor, and can be called multiple times between predict steps.
 | |
| # Access and set the state of the filter directly with ekf.state and ekf.covar.
 | |
| 
 | |
| 
 | |
| class SensorReading:
 | |
|   # Given a perfect model and no noise, data = obs_model * state
 | |
|   def __init__(self, data, covar, obs_model):
 | |
|     self.data = data
 | |
|     self.obs_model = obs_model
 | |
|     self.covar = covar
 | |
| 
 | |
|   def __repr__(self):
 | |
|     return "SensorReading(data={}, covar={}, obs_model={})".format(
 | |
|       repr(self.data), repr(self.covar), repr(self.obs_model))
 | |
| 
 | |
| 
 | |
| # A generic sensor class that does no pre-processing of data
 | |
| class SimpleSensor:
 | |
|   # obs_model can be
 | |
|   #   a full observation model matrix, or
 | |
|   #   an integer or tuple of indices into ekf.state, indicating which variables are being directly observed
 | |
|   # covar can be
 | |
|   #   a full covariance matrix
 | |
|   #   a float or tuple of individual covars for each component of the sensor reading
 | |
|   # dims is the number of states in the EKF
 | |
|   def __init__(self, obs_model, covar, dims):
 | |
|     # Allow for integer covar/obs_model
 | |
|     if not hasattr(obs_model, "__len__"):
 | |
|       obs_model = (obs_model, )
 | |
|     if not hasattr(covar, "__len__"):
 | |
|       covar = (covar, )
 | |
| 
 | |
|     # Full observation model passed
 | |
|     if dims in np.array(obs_model).shape:
 | |
|       self.obs_model = np.asmatrix(obs_model)
 | |
|       self.covar = np.asmatrix(covar)
 | |
|     # Indices of unit observations passed
 | |
|     else:
 | |
|       self.obs_model = np.matlib.zeros((len(obs_model), dims))
 | |
|       self.obs_model[:, list(obs_model)] = np.identity(len(obs_model))
 | |
|       if np.asarray(covar).ndim == 2:
 | |
|         self.covar = np.asmatrix(covar)
 | |
|       elif len(covar) == len(obs_model):
 | |
|         self.covar = np.matlib.diag(covar)
 | |
|       else:
 | |
|         self.covar = np.matlib.identity(len(obs_model)) * covar
 | |
| 
 | |
|   def read(self, data, covar=None):
 | |
|     if covar:
 | |
|       self.covar = covar
 | |
|     return SensorReading(data, self.covar, self.obs_model)
 | |
| 
 | |
| 
 | |
| class EKF:
 | |
|   __metaclass__ = abc.ABCMeta
 | |
| 
 | |
|   def __init__(self, debug=False):
 | |
|     self.DEBUG = debug
 | |
| 
 | |
| 
 | |
|   def __str__(self):
 | |
|     return "EKF(state={}, covar={})".format(self.state, self.covar)
 | |
| 
 | |
|   # Measurement update
 | |
|   # Reading should be a SensorReading object with data, covar, and obs_model attributes
 | |
|   def update(self, reading):
 | |
|     # Potential improvements:
 | |
|     # deal with negative covars
 | |
|     # add noise to really low covars to ensure stability
 | |
|     # use mahalanobis distance to reject outliers
 | |
|     # wrap angles after state updates and innovation
 | |
| 
 | |
|     # y = z - H*x
 | |
|     innovation = reading.data - reading.obs_model * self.state
 | |
| 
 | |
|     if self.DEBUG:
 | |
|       print "reading:\n",reading.data
 | |
|       print "innovation:\n",innovation
 | |
| 
 | |
|     # S = H*P*H' + R
 | |
|     innovation_covar = reading.obs_model * self.covar * reading.obs_model.T + reading.covar
 | |
| 
 | |
|     # K = P*H'*S^-1
 | |
|     kalman_gain = self.covar * reading.obs_model.T * np.linalg.inv(
 | |
|       innovation_covar)
 | |
| 
 | |
|     if self.DEBUG:
 | |
|       print "gain:\n", kalman_gain
 | |
|       print "innovation_covar:\n", innovation_covar
 | |
|       print "innovation: ", innovation
 | |
|       print "test: ", self.covar * reading.obs_model.T * (
 | |
|         reading.obs_model * self.covar * reading.obs_model.T + reading.covar *
 | |
|         0).I
 | |
| 
 | |
|     # x = x + K*y
 | |
|     self.state += kalman_gain*innovation
 | |
| 
 | |
|     # print "covar", np.diag(self.covar)
 | |
|     #self.state[(roll_vel, yaw_vel, pitch_vel),:] = reading.data
 | |
| 
 | |
|     # Standard form: P = (I - K*H)*P
 | |
|     # self.covar = (self.identity - kalman_gain*reading.obs_model) * self.covar
 | |
| 
 | |
|     # Use the Joseph form for numerical stability: P = (I-K*H)*P*(I - K*H)' + K*R*K'
 | |
|     aux_mtrx = (self.identity - kalman_gain * reading.obs_model)
 | |
|     self.covar = aux_mtrx * self.covar * aux_mtrx.T + kalman_gain * reading.covar * kalman_gain.T
 | |
| 
 | |
|     if self.DEBUG:
 | |
|       print "After update"
 | |
|       print "state\n", self.state
 | |
|       print "covar:\n",self.covar
 | |
| 
 | |
|   def update_scalar(self, reading):
 | |
|     # like update but knowing that measurement is a scalar
 | |
|     # this avoids matrix inversions and speeds up (surprisingly) drived.py a lot
 | |
| 
 | |
|     # innovation = reading.data - np.matmul(reading.obs_model, self.state)
 | |
|     # innovation_covar = np.matmul(np.matmul(reading.obs_model, self.covar), reading.obs_model.T) + reading.covar
 | |
|     # kalman_gain = np.matmul(self.covar, reading.obs_model.T)/innovation_covar
 | |
|     # self.state += np.matmul(kalman_gain, innovation)
 | |
|     # aux_mtrx = self.identity - np.matmul(kalman_gain, reading.obs_model)
 | |
|     # self.covar =  np.matmul(aux_mtrx, np.matmul(self.covar, aux_mtrx.T)) + np.matmul(kalman_gain, np.matmul(reading.covar, kalman_gain.T))
 | |
| 
 | |
|     # written without np.matmul
 | |
|     es = np.einsum
 | |
|     ABC_T = "ij,jk,lk->il"
 | |
|     AB_T = "ij,kj->ik"
 | |
|     AB = "ij,jk->ik"
 | |
|     innovation = reading.data - es(AB, reading.obs_model, self.state)
 | |
|     innovation_covar = es(ABC_T, reading.obs_model, self.covar,
 | |
|                           reading.obs_model) + reading.covar
 | |
|     kalman_gain = es(AB_T, self.covar, reading.obs_model) / innovation_covar
 | |
| 
 | |
|     self.state += es(AB, kalman_gain, innovation)
 | |
|     aux_mtrx = self.identity - es(AB, kalman_gain, reading.obs_model)
 | |
|     self.covar = es(ABC_T, aux_mtrx, self.covar, aux_mtrx) + \
 | |
|                  es(ABC_T, kalman_gain, reading.covar, kalman_gain)
 | |
| 
 | |
|   # Prediction update
 | |
|   def predict(self, dt):
 | |
|     es = np.einsum
 | |
|     ABC_T = "ij,jk,lk->il"
 | |
|     AB = "ij,jk->ik"
 | |
| 
 | |
|     # State update
 | |
|     transfer_fun, transfer_fun_jacobian = self.calc_transfer_fun(dt)
 | |
| 
 | |
|     # self.state = np.matmul(transfer_fun, self.state)
 | |
|     # self.covar = np.matmul(np.matmul(transfer_fun_jacobian, self.covar), transfer_fun_jacobian.T) + self.process_noise * dt
 | |
| 
 | |
|     # x = f(x, u), written in the form x = A(x, u)*x
 | |
|     self.state = es(AB, transfer_fun, self.state)
 | |
| 
 | |
|     # P = J*P*J' + Q
 | |
|     self.covar = es(ABC_T, transfer_fun_jacobian, self.covar,
 | |
|                     transfer_fun_jacobian) + self.process_noise * dt  #!dt
 | |
| 
 | |
|     #! Clip covariance to avoid explosions
 | |
|     self.covar = np.clip(self.covar,-1e10,1e10)
 | |
| 
 | |
|   @abc.abstractmethod
 | |
|   def calc_transfer_fun(self, dt):
 | |
|     """Return a tuple with the transfer function and transfer function jacobian
 | |
|     The transfer function and jacobian should both be a numpy matrix of size DIMSxDIMS
 | |
| 
 | |
|     The transfer function matrix A should satisfy the state-update equation
 | |
|       x_(k+1) = A * x_k
 | |
| 
 | |
|     The jacobian J is the direct jacobian A*x_k. For linear systems J=A.
 | |
| 
 | |
|     Current implementations calculate A and J as functions of state. Control input
 | |
|       can be added trivially by adding a control parameter to predict() and calc_tranfer_update(),
 | |
|       and using it during calculation of A and J
 | |
|     """
 | |
| 
 | |
| 
 | |
| class FastEKF1D(EKF):
 | |
|   """Fast version of EKF for 1D problems with scalar readings."""
 | |
| 
 | |
|   def __init__(self, dt, var_init, Q):
 | |
|     super(FastEKF1D, self).__init__(False)
 | |
|     self.state = [0, 0]
 | |
|     self.covar = [var_init, var_init, 0]
 | |
| 
 | |
|     # Process Noise
 | |
|     self.dtQ0 = dt * Q[0]
 | |
|     self.dtQ1 = dt * Q[1]
 | |
| 
 | |
|   def update(self, reading):
 | |
|     raise NotImplementedError
 | |
| 
 | |
|   def update_scalar(self, reading):
 | |
|     # TODO(mgraczyk): Delete this for speed.
 | |
|     # assert np.all(reading.obs_model == [1, 0])
 | |
| 
 | |
|     rcov = reading.covar[0, 0]
 | |
| 
 | |
|     x = self.state
 | |
|     S = self.covar
 | |
| 
 | |
|     innovation = reading.data - x[0]
 | |
|     innovation_covar = S[0] + rcov
 | |
| 
 | |
|     k0 = S[0] / innovation_covar
 | |
|     k1 = S[2] / innovation_covar
 | |
| 
 | |
|     x[0] += k0 * innovation
 | |
|     x[1] += k1 * innovation
 | |
| 
 | |
|     mk = 1 - k0
 | |
|     S[1] += k1 * (k1 * (S[0] + rcov) - 2 * S[2])
 | |
|     S[2] = mk * (S[2] - k1 * S[0]) + rcov * k0 * k1
 | |
|     S[0] = mk * mk * S[0] + rcov * k0 * k0
 | |
| 
 | |
|   def predict(self, dt):
 | |
|     # State update
 | |
|     x = self.state
 | |
| 
 | |
|     x[0] += dt * x[1]
 | |
| 
 | |
|     # P = J*P*J' + Q
 | |
|     S = self.covar
 | |
|     S[0] += dt * (2 * S[2] + dt * S[1]) + self.dtQ0
 | |
|     S[2] += dt * S[1]
 | |
|     S[1] += self.dtQ1
 | |
| 
 | |
|     # Clip covariance to avoid explosions
 | |
|     S = max(-1e10, min(S, 1e10))
 | |
| 
 | |
|   def calc_transfer_fun(self, dt):
 | |
|     tf = np.identity(2)
 | |
|     tf[0, 1] = dt
 | |
|     tfj = tf
 | |
|     return tf, tfj
 | |
| 
 |