dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

117 lines
4.4 KiB

import numpy as np
from common.transformations.camera import (FULL_FRAME_SIZE,
get_view_frame_from_calib_frame)
# segnet
SEGNET_SIZE = (512, 384)
def get_segnet_frame_from_camera_frame(segnet_size=SEGNET_SIZE, full_frame_size=FULL_FRAME_SIZE):
return np.array([[float(segnet_size[0]) / full_frame_size[0], 0.0],
[0.0, float(segnet_size[1]) / full_frame_size[1]]])
segnet_frame_from_camera_frame = get_segnet_frame_from_camera_frame() # xx
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_fl = 910.0
medmodel_intrinsics = np.array([
[medmodel_fl, 0.0, 0.5 * MEDMODEL_INPUT_SIZE[0]],
[0.0, medmodel_fl, MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# BIG model
BIGMODEL_INPUT_SIZE = (1024, 512)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_fl = 910.0
bigmodel_intrinsics = np.array([
[bigmodel_fl, 0.0, 0.5 * BIGMODEL_INPUT_SIZE[0]],
[0.0, bigmodel_fl, 256 + MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# SBIG model (big model with the size of small model)
SBIGMODEL_INPUT_SIZE = (512, 256)
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
sbigmodel_fl = 455.0
sbigmodel_intrinsics = np.array([
[sbigmodel_fl, 0.0, 0.5 * SBIGMODEL_INPUT_SIZE[0]],
[0.0, sbigmodel_fl, 0.5 * (256 + MEDMODEL_CY)],
[0.0, 0.0, 1.0]])
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
sbigmodel_frame_from_calib_frame = np.dot(sbigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
### This function mimics the update_calibration logic in modeld.cc
### Manually verified to give similar results to xx.uncommon.utils.transform_img
def get_warp_matrix(rpy_calib, wide_cam=False, big_model=False, tici=True):
from common.transformations.orientation import rot_from_euler
from common.transformations.camera import view_frame_from_device_frame, eon_fcam_intrinsics, tici_ecam_intrinsics, tici_fcam_intrinsics
if tici and wide_cam:
intrinsics = tici_ecam_intrinsics
elif tici:
intrinsics = tici_fcam_intrinsics
else:
intrinsics = eon_fcam_intrinsics
if big_model:
sbigmodel_from_calib = sbigmodel_frame_from_calib_frame[:, (0,1,2)]
calib_from_model = np.linalg.inv(sbigmodel_from_calib)
else:
medmodel_from_calib = medmodel_frame_from_calib_frame[:, (0,1,2)]
calib_from_model = np.linalg.inv(medmodel_from_calib)
device_from_calib = rot_from_euler(rpy_calib)
camera_from_calib = intrinsics.dot(view_frame_from_device_frame.dot(device_from_calib))
warp_matrix = camera_from_calib.dot(calib_from_model)
return warp_matrix
### This is old, just for debugging
def get_warp_matrix_old(rpy_calib, wide_cam=False, big_model=False, tici=True):
from common.transformations.orientation import rot_from_euler
from common.transformations.camera import view_frame_from_device_frame, eon_fcam_intrinsics, tici_ecam_intrinsics, tici_fcam_intrinsics
def get_view_frame_from_road_frame(roll, pitch, yaw, height):
device_from_road = rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
view_from_road = view_frame_from_device_frame.dot(device_from_road)
return np.hstack((view_from_road, [[0], [height], [0]]))
if tici and wide_cam:
intrinsics = tici_ecam_intrinsics
elif tici:
intrinsics = tici_fcam_intrinsics
else:
intrinsics = eon_fcam_intrinsics
model_height = 1.22
if big_model:
model_from_road = np.dot(sbigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
else:
model_from_road = np.dot(medmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
ground_from_model = np.linalg.inv(model_from_road[:, (0, 1, 3)])
E = get_view_frame_from_road_frame(*rpy_calib, 1.22)
camera_frame_from_road_frame = intrinsics.dot(E)
camera_frame_from_ground = camera_frame_from_road_frame[:,(0,1,3)]
warp_matrix = camera_frame_from_ground .dot(ground_from_model)
return warp_matrix