dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

374 lines
12 KiB

#!/usr/bin/env python3
# type: ignore
import carla # pylint: disable=import-error
import time
import math
import atexit
import numpy as np
import threading
import cereal.messaging as messaging
import argparse
from common.params import Params
from common.realtime import Ratekeeper, DT_DMON
from lib.can import can_function
from selfdrive.car.honda.values import CruiseButtons
from selfdrive.test.helpers import set_params_enabled
parser = argparse.ArgumentParser(description='Bridge between CARLA and openpilot.')
parser.add_argument('--joystick', action='store_true')
parser.add_argument('--town', type=str, default='Town04')
parser.add_argument('--spawn_point', dest='num_selected_spawn_point',
type=int, default=16)
parser.add_argument('--cloudyness', default=0.1, type=float)
parser.add_argument('--precipitation', default=0.0, type=float)
parser.add_argument('--precipitation_deposits', default=0.0, type=float)
parser.add_argument('--wind_intensity', default=0.0, type=float)
parser.add_argument('--sun_azimuth_angle', default=15.0, type=float)
parser.add_argument('--sun_altitude_angle', default=75.0, type=float)
args = parser.parse_args()
W, H = 1164, 874
REPEAT_COUNTER = 5
PRINT_DECIMATION = 100
STEER_RATIO = 15.
pm = messaging.PubMaster(['frame', 'sensorEvents', 'can'])
sm = messaging.SubMaster(['carControl','controlsState'])
class VehicleState:
def __init__(self):
self.speed = 0
self.angle = 0
self.cruise_button= 0
self.is_engaged=False
def steer_rate_limit(old, new):
# Rate limiting to 0.5 degrees per step
limit = 0.5
if new > old + limit:
return old + limit
elif new < old - limit:
return old - limit
else:
return new
frame_id = 0
def cam_callback(image):
global frame_id
img = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
img = np.reshape(img, (H, W, 4))
img = img[:, :, [0, 1, 2]].copy()
dat = messaging.new_message('frame')
dat.frame = {
"frameId": image.frame,
"image": img.tostring(),
"transform": [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
}
pm.send('frame', dat)
frame_id += 1
def imu_callback(imu):
dat = messaging.new_message('sensorEvents', 2)
dat.sensorEvents[0].sensor = 4
dat.sensorEvents[0].type = 0x10
dat.sensorEvents[0].init('acceleration')
dat.sensorEvents[0].acceleration.v = [imu.accelerometer.x, imu.accelerometer.y, imu.accelerometer.z]
# copied these numbers from locationd
dat.sensorEvents[1].sensor = 5
dat.sensorEvents[1].type = 0x10
dat.sensorEvents[1].init('gyroUncalibrated')
dat.sensorEvents[1].gyroUncalibrated.v = [imu.gyroscope.x, imu.gyroscope.y, imu.gyroscope.z]
pm.send('sensorEvents', dat)
def health_function():
pm = messaging.PubMaster(['health'])
while 1:
dat = messaging.new_message('health')
dat.valid = True
dat.health = {
'ignitionLine': True,
'hwType': "blackPanda",
'controlsAllowed': True,
'safetyModel': 'hondaNidec'
}
pm.send('health', dat)
time.sleep(0.5)
def fake_gps():
# TODO: read GPS from CARLA
pm = messaging.PubMaster(['gpsLocationExternal'])
while 1:
dat = messaging.new_message('gpsLocationExternal')
pm.send('gpsLocationExternal', dat)
time.sleep(0.01)
def fake_driver_monitoring():
pm = messaging.PubMaster(['driverState','dMonitoringState'])
while 1:
# dmonitoringmodeld output
dat = messaging.new_message('driverState')
dat.driverState.faceProb = 1.0
pm.send('driverState', dat)
# dmonitoringd output
dat = messaging.new_message('dMonitoringState')
dat.dMonitoringState = {
"faceDetected": True,
"isDistracted": False,
"awarenessStatus": 1.,
"isRHD": False,
}
pm.send('dMonitoringState', dat)
time.sleep(DT_DMON)
def can_function_runner(vs):
i = 0
while 1:
can_function(pm, vs.speed, vs.angle, i, vs.cruise_button, vs.is_engaged)
time.sleep(0.01)
i+=1
def go(q):
# setup CARLA
client = carla.Client("127.0.0.1", 2000)
client.set_timeout(10.0)
world = client.load_world(args.town)
blueprint_library = world.get_blueprint_library()
world_map = world.get_map()
vehicle_bp = blueprint_library.filter('vehicle.tesla.*')[0]
spawn_points = world_map.get_spawn_points()
assert len(spawn_points) > args.num_selected_spawn_point, \
f'''No spawn point {args.num_selected_spawn_point}, try a value between 0 and
{len(spawn_points)} for this town.'''
spawn_point = spawn_points[args.num_selected_spawn_point]
vehicle = world.spawn_actor(vehicle_bp, spawn_point)
max_steer_angle = vehicle.get_physics_control().wheels[0].max_steer_angle
# make tires less slippery
# wheel_control = carla.WheelPhysicsControl(tire_friction=5)
physics_control = vehicle.get_physics_control()
physics_control.mass = 2326
# physics_control.wheels = [wheel_control]*4
physics_control.torque_curve = [[20.0, 500.0], [5000.0, 500.0]]
physics_control.gear_switch_time = 0.0
vehicle.apply_physics_control(physics_control)
blueprint = blueprint_library.find('sensor.camera.rgb')
blueprint.set_attribute('image_size_x', str(W))
blueprint.set_attribute('image_size_y', str(H))
blueprint.set_attribute('fov', '70')
blueprint.set_attribute('sensor_tick', '0.05')
transform = carla.Transform(carla.Location(x=0.8, z=1.45))
camera = world.spawn_actor(blueprint, transform, attach_to=vehicle)
camera.listen(cam_callback)
world.set_weather(carla.WeatherParameters(
cloudyness=args.cloudyness,
precipitation=args.precipitation,
precipitation_deposits=args.precipitation_deposits,
wind_intensity=args.wind_intensity,
sun_azimuth_angle=args.sun_azimuth_angle,
sun_altitude_angle=args.sun_altitude_angle
))
# reenable IMU
imu_bp = blueprint_library.find('sensor.other.imu')
imu = world.spawn_actor(imu_bp, transform, attach_to=vehicle)
imu.listen(imu_callback)
def destroy():
print("clean exit")
imu.destroy()
camera.destroy()
vehicle.destroy()
print("done")
atexit.register(destroy)
vehicle_state = VehicleState()
# launch fake car threads
threading.Thread(target=health_function).start()
threading.Thread(target=fake_driver_monitoring).start()
threading.Thread(target=fake_gps).start()
threading.Thread(target=can_function_runner, args=(vehicle_state,)).start()
# can loop
rk = Ratekeeper(100, print_delay_threshold=0.05)
# init
throttle_ease_out_counter = REPEAT_COUNTER
brake_ease_out_counter = REPEAT_COUNTER
steer_ease_out_counter = REPEAT_COUNTER
vc = carla.VehicleControl(throttle=0, steer=0, brake=0, reverse=False)
is_openpilot_engaged = False
throttle_out = steer_out = brake_out = 0
throttle_op = steer_op = brake_op = 0
throttle_manual = steer_manual = brake_manual = 0
old_steer = old_brake = old_throttle = 0
throttle_manual_multiplier = 0.7 #keyboard signal is always 1
brake_manual_multiplier = 0.7 #keyboard signal is always 1
steer_manual_multiplier = 45 * STEER_RATIO #keyboard signal is always 1
while 1:
# 1. Read the throttle, steer and brake from op or manual controls
# 2. Set instructions in Carla
# 3. Send current carstate to op via can
cruise_button = 0
throttle_out = steer_out = brake_out = 0
throttle_op = steer_op = brake_op = 0
throttle_manual = steer_manual = brake_manual = 0
# --------------Step 1-------------------------------
if not q.empty():
message = q.get()
m = message.split('_')
if m[0] == "steer":
steer_manual = float(m[1])
is_openpilot_engaged = False
if m[0] == "throttle":
throttle_manual = float(m[1])
is_openpilot_engaged = False
if m[0] == "brake":
brake_manual = float(m[1])
is_openpilot_engaged = False
if m[0] == "reverse":
#in_reverse = not in_reverse
cruise_button = CruiseButtons.CANCEL
is_openpilot_engaged = False
if m[0] == "cruise":
if m[1] == "down":
cruise_button = CruiseButtons.DECEL_SET
is_openpilot_engaged = True
if m[1] == "up":
cruise_button = CruiseButtons.RES_ACCEL
is_openpilot_engaged = True
if m[1] == "cancel":
cruise_button = CruiseButtons.CANCEL
is_openpilot_engaged = False
throttle_out = throttle_manual * throttle_manual_multiplier
steer_out = steer_manual * steer_manual_multiplier
brake_out = brake_manual * brake_manual_multiplier
#steer_out = steer_out
# steer_out = steer_rate_limit(old_steer, steer_out)
old_steer = steer_out
old_throttle = throttle_out
old_brake = brake_out
# print('message',old_throttle, old_steer, old_brake)
if is_openpilot_engaged:
sm.update(0)
throttle_op = sm['carControl'].actuators.gas #[0,1]
brake_op = sm['carControl'].actuators.brake #[0,1]
steer_op = sm['controlsState'].angleSteersDes # degrees [-180,180]
throttle_out = throttle_op
steer_out = steer_op
brake_out = brake_op
steer_out = steer_rate_limit(old_steer, steer_out)
old_steer = steer_out
# OP Exit conditions
# if throttle_out > 0.3:
# cruise_button = CruiseButtons.CANCEL
# is_openpilot_engaged = False
# if brake_out > 0.3:
# cruise_button = CruiseButtons.CANCEL
# is_openpilot_engaged = False
# if steer_out > 0.3:
# cruise_button = CruiseButtons.CANCEL
# is_openpilot_engaged = False
else:
if throttle_out==0 and old_throttle>0:
if throttle_ease_out_counter>0:
throttle_out = old_throttle
throttle_ease_out_counter += -1
else:
throttle_ease_out_counter = REPEAT_COUNTER
old_throttle = 0
if brake_out==0 and old_brake>0:
if brake_ease_out_counter>0:
brake_out = old_brake
brake_ease_out_counter += -1
else:
brake_ease_out_counter = REPEAT_COUNTER
old_brake = 0
if steer_out==0 and old_steer!=0:
if steer_ease_out_counter>0:
steer_out = old_steer
steer_ease_out_counter += -1
else:
steer_ease_out_counter = REPEAT_COUNTER
old_steer = 0
# --------------Step 2-------------------------------
steer_carla = steer_out / (max_steer_angle * STEER_RATIO * -1)
steer_carla = np.clip(steer_carla, -1,1)
steer_out = steer_carla * (max_steer_angle * STEER_RATIO * -1)
old_steer = steer_carla * (max_steer_angle * STEER_RATIO * -1)
vc.throttle = throttle_out/0.6
vc.steer = steer_carla
vc.brake = brake_out
vehicle.apply_control(vc)
# --------------Step 3-------------------------------
vel = vehicle.get_velocity()
speed = math.sqrt(vel.x**2 + vel.y**2 + vel.z**2) # in m/s
vehicle_state.speed = speed
vehicle_state.angle = steer_out
vehicle_state.cruise_button = cruise_button
vehicle_state.is_engaged = is_openpilot_engaged
if rk.frame%PRINT_DECIMATION == 0:
print("frame: ", "engaged:", is_openpilot_engaged, "; throttle: ", round(vc.throttle, 3), "; steer(c/deg): ", round(vc.steer, 3), round(steer_out, 3), "; brake: ", round(vc.brake, 3))
rk.keep_time()
if __name__ == "__main__":
# make sure params are in a good state
params = Params()
params.clear_all()
set_params_enabled()
params.delete("Offroad_ConnectivityNeeded")
params.put("CalibrationParams", '{"calib_radians": [0,0,0], "valid_blocks": 20}')
from multiprocessing import Process, Queue
q = Queue()
p = Process(target=go, args=(q,))
p.daemon = True
p.start()
if args.joystick:
# start input poll for joystick
from lib.manual_ctrl import wheel_poll_thread
wheel_poll_thread(q)
else:
# start input poll for keyboard
from lib.keyboard_ctrl import keyboard_poll_thread
keyboard_poll_thread(q)