dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

256 lines
10 KiB

#!/usr/bin/env python3
import os
import math
import json
import numpy as np
import cereal.messaging as messaging
from cereal import car
from cereal import log
from common.params import Params, put_nonblocking
from common.realtime import config_realtime_process, DT_MDL
from common.numpy_fast import clip
from selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from selfdrive.locationd.models.constants import GENERATED_DIR
from system.swaglog import cloudlog
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
ROLL_LOWERED_MAX = math.radians(8)
ROLL_STD_MAX = math.radians(1.5)
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
OFFSET_MAX = 10.0
OFFSET_LOWERED_MAX = 8.0
class ParamsLearner:
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
self.kf.filter.set_global("mass", CP.mass)
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
self.kf.filter.set_global("center_to_front", CP.centerToFront)
self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
self.active = False
self.speed = 0.0
self.yaw_rate = 0.0
self.yaw_rate_std = 0.0
self.roll = 0.0
self.steering_angle = 0.0
self.roll_valid = False
def handle_log(self, t, which, msg):
if which == 'liveLocationKalman':
self.yaw_rate = msg.angularVelocityCalibrated.value[2]
self.yaw_rate_std = msg.angularVelocityCalibrated.std[2]
localizer_roll = msg.orientationNED.value[0]
localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0]
self.roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
if self.roll_valid:
roll = localizer_roll
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
roll_std = 2 * localizer_roll_std
else:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
yaw_rate_valid = msg.angularVelocityCalibrated.valid
yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1 # rad/s
if self.active:
if msg.posenetOK:
if yaw_rate_valid:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[-self.yaw_rate]]),
np.array([np.atleast_2d(self.yaw_rate_std**2)]))
self.kf.predict_and_observe(t,
ObservationKind.ROAD_ROLL,
np.array([[self.roll]]),
np.array([np.atleast_2d(roll_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
# states in longer routes (especially straight stretches).
stiffness = float(self.kf.x[States.STIFFNESS].item())
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
elif which == 'carState':
self.steering_angle = msg.steeringAngleDeg
self.speed = msg.vEgo
in_linear_region = abs(self.steering_angle) < 45
self.active = self.speed > 1 and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.set_filter_time(t)
self.kf.filter.reset_rewind()
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
if current_valid:
current_valid = abs(val) < threshold
else:
current_valid = abs(val) < lowered_threshold
return current_valid
def main(sm=None, pm=None):
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
if sm is None:
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
if pm is None:
pm = messaging.PubMaster(['liveParameters'])
params_reader = Params()
# wait for stats about the car to come in from controls
cloudlog.info("paramsd is waiting for CarParams")
with car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) as msg:
CP = msg
cloudlog.info("paramsd got CarParams")
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
params = params_reader.get("LiveParameters")
# Check if car model matches
if params is not None:
params = json.loads(params)
if params.get('carFingerprint', None) != CP.carFingerprint:
cloudlog.info("Parameter learner found parameters for wrong car.")
params = None
# Check if starting values are sane
if params is not None:
try:
steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
if not steer_ratio_sane:
cloudlog.info(f"Invalid starting values found {params}")
params = None
except Exception as e:
cloudlog.info(f"Error reading params {params}: {str(e)}")
params = None
# TODO: cache the params with the capnp struct
if params is None:
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': CP.steerRatio,
'stiffnessFactor': 1.0,
'angleOffsetAverageDeg': 0.0,
}
cloudlog.info("Parameter learner resetting to default values")
if not REPLAY:
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
# Without a way to detect this we have to reset the stiffness every drive
params['stiffnessFactor'] = 1.0
pInitial = None
if DEBUG:
pInitial = np.array(params['filterState']['std']) if 'filterState' in params else None
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial)
angle_offset_average = params['angleOffsetAverageDeg']
angle_offset = angle_offset_average
roll = 0.0
avg_offset_valid = True
total_offset_valid = True
roll_valid = True
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
learner.handle_log(t, which, sm[which])
if sm.updated['liveLocationKalman']:
x = learner.kf.x
P = np.sqrt(learner.kf.P.diagonal())
if not all(map(math.isfinite, x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
x = learner.kf.x
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()),
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
# Account for the opposite signs of the yaw rates
sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = roll
liveParameters.angleOffsetAverageDeg = angle_offset_average
liveParameters.angleOffsetDeg = angle_offset
liveParameters.valid = all((
avg_offset_valid,
total_offset_valid,
roll_valid,
roll_std < ROLL_STD_MAX,
0.2 <= liveParameters.stiffnessFactor <= 5.0,
min_sr <= liveParameters.steerRatio <= max_sr,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if DEBUG:
liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message()
liveParameters.filterState.value = x.tolist()
liveParameters.filterState.std = P.tolist()
liveParameters.filterState.valid = True
msg.valid = sm.all_checks()
if sm.frame % 1200 == 0: # once a minute
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': liveParameters.steerRatio,
'stiffnessFactor': liveParameters.stiffnessFactor,
'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
}
put_nonblocking("LiveParameters", json.dumps(params))
pm.send('liveParameters', msg)
if __name__ == "__main__":
main()