You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							163 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
	
	
							163 lines
						
					
					
						
							5.6 KiB
						
					
					
				import itertools
 | 
						|
import numpy as np
 | 
						|
from dataclasses import dataclass
 | 
						|
 | 
						|
import openpilot.common.transformations.orientation as orient
 | 
						|
 | 
						|
## -- hardcoded hardware params --
 | 
						|
@dataclass(frozen=True)
 | 
						|
class CameraConfig:
 | 
						|
  width: int
 | 
						|
  height: int
 | 
						|
  focal_length: float
 | 
						|
 | 
						|
  @property
 | 
						|
  def intrinsics(self):
 | 
						|
    # aka 'K' aka camera_frame_from_view_frame
 | 
						|
    return np.array([
 | 
						|
      [self.focal_length,  0.0, float(self.width)/2],
 | 
						|
      [0.0, self.focal_length, float(self.height)/2],
 | 
						|
      [0.0,  0.0, 1.0]
 | 
						|
    ])
 | 
						|
 | 
						|
  @property
 | 
						|
  def intrinsics_inv(self):
 | 
						|
    # aka 'K_inv' aka view_frame_from_camera_frame
 | 
						|
    return np.linalg.inv(self.intrinsics)
 | 
						|
 | 
						|
@dataclass(frozen=True)
 | 
						|
class DeviceCameraConfig:
 | 
						|
  fcam: CameraConfig
 | 
						|
  dcam: CameraConfig
 | 
						|
  ecam: CameraConfig
 | 
						|
 | 
						|
ar_ox_fisheye = CameraConfig(1928, 1208, 567.0)  # focal length probably wrong? magnification is not consistent across frame
 | 
						|
ar_ox_config = DeviceCameraConfig(CameraConfig(1928, 1208, 2648.0), ar_ox_fisheye, ar_ox_fisheye)
 | 
						|
os_fisheye = CameraConfig(2688, 1520, 567.0 / 2 * 3)
 | 
						|
os_config = DeviceCameraConfig(CameraConfig(2688, 1520, 2648.0 * 2 / 3), os_fisheye, os_fisheye)
 | 
						|
 | 
						|
DEVICE_CAMERAS = {
 | 
						|
  # A "device camera" is defined by a device type and sensor
 | 
						|
 | 
						|
  # sensor type was never set on eon/neo/two
 | 
						|
  ("neo", "unknown"): DeviceCameraConfig(CameraConfig(1164, 874, 910.0), CameraConfig(816, 612, 650.0), CameraConfig(0, 0, 0.)),
 | 
						|
  # unknown here is AR0231, field was added with OX03C10 support
 | 
						|
  ("tici", "unknown"): ar_ox_config,
 | 
						|
 | 
						|
  # before deviceState.deviceType was set, assume tici AR config
 | 
						|
  ("unknown", "ar0231"): ar_ox_config,
 | 
						|
  ("unknown", "ox03c10"): ar_ox_config,
 | 
						|
 | 
						|
  # simulator (emulates a tici)
 | 
						|
  ("pc", "unknown"): ar_ox_config,
 | 
						|
}
 | 
						|
prods = itertools.product(('tici', 'tizi', 'mici'), (('ar0231', ar_ox_config), ('ox03c10', ar_ox_config), ('os04c10', os_config)))
 | 
						|
DEVICE_CAMERAS.update({(d, c[0]): c[1] for d, c in prods})
 | 
						|
 | 
						|
# device/mesh : x->forward, y-> right, z->down
 | 
						|
# view : x->right, y->down, z->forward
 | 
						|
device_frame_from_view_frame = np.array([
 | 
						|
  [ 0.,  0.,  1.],
 | 
						|
  [ 1.,  0.,  0.],
 | 
						|
  [ 0.,  1.,  0.]
 | 
						|
])
 | 
						|
view_frame_from_device_frame = device_frame_from_view_frame.T
 | 
						|
 | 
						|
 | 
						|
# aka 'extrinsic_matrix'
 | 
						|
# road : x->forward, y -> left, z->up
 | 
						|
def get_view_frame_from_road_frame(roll, pitch, yaw, height):
 | 
						|
  device_from_road = orient.rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
 | 
						|
  view_from_road = view_frame_from_device_frame.dot(device_from_road)
 | 
						|
  return np.hstack((view_from_road, [[0], [height], [0]]))
 | 
						|
 | 
						|
 | 
						|
 | 
						|
# aka 'extrinsic_matrix'
 | 
						|
def get_view_frame_from_calib_frame(roll, pitch, yaw, height):
 | 
						|
  device_from_calib= orient.rot_from_euler([roll, pitch, yaw])
 | 
						|
  view_from_calib = view_frame_from_device_frame.dot(device_from_calib)
 | 
						|
  return np.hstack((view_from_calib, [[0], [height], [0]]))
 | 
						|
 | 
						|
 | 
						|
def vp_from_ke(m):
 | 
						|
  """
 | 
						|
  Computes the vanishing point from the product of the intrinsic and extrinsic
 | 
						|
  matrices C = KE.
 | 
						|
 | 
						|
  The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T
 | 
						|
  """
 | 
						|
  return (m[0, 0]/m[2, 0], m[1, 0]/m[2, 0])
 | 
						|
 | 
						|
 | 
						|
def roll_from_ke(m):
 | 
						|
  # note: different from calibration.h/RollAnglefromKE: i think that one's just wrong
 | 
						|
  return np.arctan2(-(m[1, 0] - m[1, 1] * m[2, 0] / m[2, 1]),
 | 
						|
                    -(m[0, 0] - m[0, 1] * m[2, 0] / m[2, 1]))
 | 
						|
 | 
						|
 | 
						|
def normalize(img_pts, intrinsics):
 | 
						|
  # normalizes image coordinates
 | 
						|
  # accepts single pt or array of pts
 | 
						|
  intrinsics_inv = np.linalg.inv(intrinsics)
 | 
						|
  img_pts = np.array(img_pts)
 | 
						|
  input_shape = img_pts.shape
 | 
						|
  img_pts = np.atleast_2d(img_pts)
 | 
						|
  img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1))))
 | 
						|
  img_pts_normalized = img_pts.dot(intrinsics_inv.T)
 | 
						|
  img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
 | 
						|
  return img_pts_normalized[:, :2].reshape(input_shape)
 | 
						|
 | 
						|
 | 
						|
def denormalize(img_pts, intrinsics, width=np.inf, height=np.inf):
 | 
						|
  # denormalizes image coordinates
 | 
						|
  # accepts single pt or array of pts
 | 
						|
  img_pts = np.array(img_pts)
 | 
						|
  input_shape = img_pts.shape
 | 
						|
  img_pts = np.atleast_2d(img_pts)
 | 
						|
  img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1), dtype=img_pts.dtype)))
 | 
						|
  img_pts_denormalized = img_pts.dot(intrinsics.T)
 | 
						|
  if np.isfinite(width):
 | 
						|
    img_pts_denormalized[img_pts_denormalized[:, 0] > width] = np.nan
 | 
						|
    img_pts_denormalized[img_pts_denormalized[:, 0] < 0] = np.nan
 | 
						|
  if np.isfinite(height):
 | 
						|
    img_pts_denormalized[img_pts_denormalized[:, 1] > height] = np.nan
 | 
						|
    img_pts_denormalized[img_pts_denormalized[:, 1] < 0] = np.nan
 | 
						|
  return img_pts_denormalized[:, :2].reshape(input_shape)
 | 
						|
 | 
						|
 | 
						|
def get_calib_from_vp(vp, intrinsics):
 | 
						|
  vp_norm = normalize(vp, intrinsics)
 | 
						|
  yaw_calib = np.arctan(vp_norm[0])
 | 
						|
  pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib))
 | 
						|
  roll_calib = 0
 | 
						|
  return roll_calib, pitch_calib, yaw_calib
 | 
						|
 | 
						|
 | 
						|
def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef):
 | 
						|
  # device from ecef frame
 | 
						|
  # device frame is x -> forward, y-> right, z -> down
 | 
						|
  # accepts single pt or array of pts
 | 
						|
  input_shape = pt_ecef.shape
 | 
						|
  pt_ecef = np.atleast_2d(pt_ecef)
 | 
						|
  ecef_from_device_rot = orient.rotations_from_quats(orientation_ecef)
 | 
						|
  device_from_ecef_rot = ecef_from_device_rot.T
 | 
						|
  pt_ecef_rel = pt_ecef - pos_ecef
 | 
						|
  pt_device = np.einsum('jk,ik->ij', device_from_ecef_rot, pt_ecef_rel)
 | 
						|
  return pt_device.reshape(input_shape)
 | 
						|
 | 
						|
 | 
						|
def img_from_device(pt_device):
 | 
						|
  # img coordinates from pts in device frame
 | 
						|
  # first transforms to view frame, then to img coords
 | 
						|
  # accepts single pt or array of pts
 | 
						|
  input_shape = pt_device.shape
 | 
						|
  pt_device = np.atleast_2d(pt_device)
 | 
						|
  pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device)
 | 
						|
 | 
						|
  # This function should never return negative depths
 | 
						|
  pt_view[pt_view[:, 2] < 0] = np.nan
 | 
						|
 | 
						|
  pt_img = pt_view/pt_view[:, 2:3]
 | 
						|
  return pt_img.reshape(input_shape)[:, :2]
 | 
						|
 | 
						|
 |