You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							280 lines
						
					
					
						
							9.2 KiB
						
					
					
				
			
		
		
	
	
							280 lines
						
					
					
						
							9.2 KiB
						
					
					
				| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                          License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_CORE_EIGEN_HPP__
 | |
| #define __OPENCV_CORE_EIGEN_HPP__
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| 
 | |
| #include "opencv2/core/core_c.h"
 | |
| #include "opencv2/core/core.hpp"
 | |
| 
 | |
| #if defined _MSC_VER && _MSC_VER >= 1200
 | |
| #pragma warning( disable: 4714 ) //__forceinline is not inlined
 | |
| #pragma warning( disable: 4127 ) //conditional expression is constant
 | |
| #pragma warning( disable: 4244 ) //conversion from '__int64' to 'int', possible loss of data
 | |
| #endif
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols>
 | |
| void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, Mat& dst )
 | |
| {
 | |
|     if( !(src.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _src(src.cols(), src.rows(), DataType<_Tp>::type,
 | |
|               (void*)src.data(), src.stride()*sizeof(_Tp));
 | |
|         transpose(_src, dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _src(src.rows(), src.cols(), DataType<_Tp>::type,
 | |
|                  (void*)src.data(), src.stride()*sizeof(_Tp));
 | |
|         _src.copyTo(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols>
 | |
| void cv2eigen( const Mat& src,
 | |
|                Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst )
 | |
| {
 | |
|     CV_DbgAssert(src.rows == _rows && src.cols == _cols);
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         if( src.type() == _dst.type() )
 | |
|             transpose(src, _dst);
 | |
|         else if( src.cols == src.rows )
 | |
|         {
 | |
|             src.convertTo(_dst, _dst.type());
 | |
|             transpose(_dst, _dst);
 | |
|         }
 | |
|         else
 | |
|             Mat(src.t()).convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         src.convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Matx case
 | |
| template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols>
 | |
| void cv2eigen( const Matx<_Tp, _rows, _cols>& src,
 | |
|                Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst )
 | |
| {
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(_cols, _rows, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         transpose(src, _dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(_rows, _cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         Mat(src).copyTo(_dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename _Tp>
 | |
| void cv2eigen( const Mat& src,
 | |
|                Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst )
 | |
| {
 | |
|     dst.resize(src.rows, src.cols);
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
 | |
|              dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         if( src.type() == _dst.type() )
 | |
|             transpose(src, _dst);
 | |
|         else if( src.cols == src.rows )
 | |
|         {
 | |
|             src.convertTo(_dst, _dst.type());
 | |
|             transpose(_dst, _dst);
 | |
|         }
 | |
|         else
 | |
|             Mat(src.t()).convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         src.convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Matx case
 | |
| template<typename _Tp, int _rows, int _cols>
 | |
| void cv2eigen( const Matx<_Tp, _rows, _cols>& src,
 | |
|                Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst )
 | |
| {
 | |
|     dst.resize(_rows, _cols);
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(_cols, _rows, DataType<_Tp>::type,
 | |
|              dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         transpose(src, _dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(_rows, _cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         Mat(src).copyTo(_dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename _Tp>
 | |
| void cv2eigen( const Mat& src,
 | |
|                Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst )
 | |
| {
 | |
|     CV_Assert(src.cols == 1);
 | |
|     dst.resize(src.rows);
 | |
| 
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         if( src.type() == _dst.type() )
 | |
|             transpose(src, _dst);
 | |
|         else
 | |
|             Mat(src.t()).convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         src.convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Matx case
 | |
| template<typename _Tp, int _rows>
 | |
| void cv2eigen( const Matx<_Tp, _rows, 1>& src,
 | |
|                Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst )
 | |
| {
 | |
|     dst.resize(_rows);
 | |
| 
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(1, _rows, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         transpose(src, _dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(_rows, 1, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         src.copyTo(_dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template<typename _Tp>
 | |
| void cv2eigen( const Mat& src,
 | |
|                Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst )
 | |
| {
 | |
|     CV_Assert(src.rows == 1);
 | |
|     dst.resize(src.cols);
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         if( src.type() == _dst.type() )
 | |
|             transpose(src, _dst);
 | |
|         else
 | |
|             Mat(src.t()).convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         src.convertTo(_dst, _dst.type());
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Matx
 | |
| template<typename _Tp, int _cols>
 | |
| void cv2eigen( const Matx<_Tp, 1, _cols>& src,
 | |
|                Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst )
 | |
| {
 | |
|     dst.resize(_cols);
 | |
|     if( !(dst.Flags & Eigen::RowMajorBit) )
 | |
|     {
 | |
|         Mat _dst(_cols, 1, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         transpose(src, _dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat _dst(1, _cols, DataType<_Tp>::type,
 | |
|                  dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
 | |
|         Mat(src).copyTo(_dst);
 | |
|         CV_DbgAssert(_dst.data == (uchar*)dst.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 |