You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							150 lines
						
					
					
						
							3.7 KiB
						
					
					
				
			
		
		
	
	
							150 lines
						
					
					
						
							3.7 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| # pylint: skip-file
 | |
| # flake8: noqa
 | |
| # type: ignore
 | |
| 
 | |
| import math
 | |
| import multiprocessing
 | |
| 
 | |
| import numpy as np
 | |
| from tqdm import tqdm
 | |
| 
 | |
| from selfdrive.locationd.paramsd import ParamsLearner, States
 | |
| from tools.lib.logreader import LogReader
 | |
| from tools.lib.route import Route
 | |
| 
 | |
| ROUTE = "b2f1615665781088|2021-03-14--17-27-47"
 | |
| PLOT = True
 | |
| 
 | |
| 
 | |
| def load_segment(segment_name):
 | |
|   print(f"Loading {segment_name}")
 | |
|   if segment_name is None:
 | |
|     return []
 | |
| 
 | |
|   try:
 | |
|     return list(LogReader(segment_name))
 | |
|   except ValueError as e:
 | |
|     print(f"Error parsing {segment_name}: {e}")
 | |
|     return []
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   route = Route(ROUTE)
 | |
| 
 | |
|   msgs = []
 | |
|   with multiprocessing.Pool(24) as pool:
 | |
|     for d in pool.map(load_segment, route.log_paths()):
 | |
|       msgs += d
 | |
| 
 | |
|   for m in msgs:
 | |
|     if m.which() == 'carParams':
 | |
|       CP = m.carParams
 | |
|       break
 | |
| 
 | |
|   params = {
 | |
|     'carFingerprint': CP.carFingerprint,
 | |
|     'steerRatio': CP.steerRatio,
 | |
|     'stiffnessFactor': 1.0,
 | |
|     'angleOffsetAverageDeg': 0.0,
 | |
|   }
 | |
| 
 | |
|   for m in msgs:
 | |
|     if m.which() == 'liveParameters':
 | |
|       params['steerRatio'] = m.liveParameters.steerRatio
 | |
|       params['angleOffsetAverageDeg'] = m.liveParameters.angleOffsetAverageDeg
 | |
|       break
 | |
| 
 | |
|   for m in msgs:
 | |
|     if m.which() == 'carState':
 | |
|       last_carstate = m
 | |
|       break
 | |
| 
 | |
|   print(params)
 | |
|   learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']))
 | |
|   msgs = [m for m in tqdm(msgs) if m.which() in ('liveLocationKalman', 'carState', 'liveParameters')]
 | |
|   msgs = sorted(msgs, key=lambda m: m.logMonoTime)
 | |
| 
 | |
|   ts = []
 | |
|   ts_log = []
 | |
|   results = []
 | |
|   results_log = []
 | |
|   for m in tqdm(msgs):
 | |
|     if m.which() == 'carState':
 | |
|       last_carstate = m
 | |
| 
 | |
|     elif m.which() == 'liveLocationKalman':
 | |
|       t = last_carstate.logMonoTime / 1e9
 | |
|       learner.handle_log(t, 'carState', last_carstate.carState)
 | |
| 
 | |
|       t = m.logMonoTime / 1e9
 | |
|       learner.handle_log(t, 'liveLocationKalman', m.liveLocationKalman)
 | |
| 
 | |
|       x = learner.kf.x
 | |
|       sr = float(x[States.STEER_RATIO])
 | |
|       st = float(x[States.STIFFNESS])
 | |
|       ao_avg = math.degrees(x[States.ANGLE_OFFSET])
 | |
|       ao = ao_avg + math.degrees(x[States.ANGLE_OFFSET_FAST])
 | |
|       r = [sr, st, ao_avg, ao]
 | |
|       if any(math.isnan(v) for v in r):
 | |
|         print("NaN", t)
 | |
| 
 | |
|       ts.append(t)
 | |
|       results.append(r)
 | |
| 
 | |
|     elif m.which() == 'liveParameters':
 | |
|       t = m.logMonoTime / 1e9
 | |
|       mm = m.liveParameters
 | |
| 
 | |
|       r = [mm.steerRatio, mm.stiffnessFactor, mm.angleOffsetAverageDeg, mm.angleOffsetDeg]
 | |
|       if any(math.isnan(v) for v in r):
 | |
|         print("NaN in log", t)
 | |
|       ts_log.append(t)
 | |
|       results_log.append(r)
 | |
| 
 | |
|   results = np.asarray(results)
 | |
|   results_log = np.asarray(results_log)
 | |
| 
 | |
|   if PLOT:
 | |
|     import matplotlib.pyplot as plt
 | |
|     plt.figure()
 | |
| 
 | |
|     plt.subplot(3, 2, 1)
 | |
|     plt.plot(ts, results[:, 0], label='Steer Ratio')
 | |
|     plt.grid()
 | |
|     plt.ylim([0, 20])
 | |
|     plt.legend()
 | |
| 
 | |
|     plt.subplot(3, 2, 3)
 | |
|     plt.plot(ts, results[:, 1], label='Stiffness')
 | |
|     plt.ylim([0, 2])
 | |
|     plt.grid()
 | |
|     plt.legend()
 | |
| 
 | |
|     plt.subplot(3, 2, 5)
 | |
|     plt.plot(ts, results[:, 2], label='Angle offset (average)')
 | |
|     plt.plot(ts, results[:, 3], label='Angle offset (instant)')
 | |
|     plt.ylim([-5, 5])
 | |
|     plt.grid()
 | |
|     plt.legend()
 | |
| 
 | |
|     plt.subplot(3, 2, 2)
 | |
|     plt.plot(ts_log, results_log[:, 0], label='Steer Ratio')
 | |
|     plt.grid()
 | |
|     plt.ylim([0, 20])
 | |
|     plt.legend()
 | |
| 
 | |
|     plt.subplot(3, 2, 4)
 | |
|     plt.plot(ts_log, results_log[:, 1], label='Stiffness')
 | |
|     plt.ylim([0, 2])
 | |
|     plt.grid()
 | |
|     plt.legend()
 | |
| 
 | |
|     plt.subplot(3, 2, 6)
 | |
|     plt.plot(ts_log, results_log[:, 2], label='Angle offset (average)')
 | |
|     plt.plot(ts_log, results_log[:, 3], label='Angle offset (instant)')
 | |
|     plt.ylim([-5, 5])
 | |
|     plt.grid()
 | |
|     plt.legend()
 | |
|     plt.show()
 | |
| 
 | |
| 
 |