You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							108 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
	
	
							108 lines
						
					
					
						
							3.4 KiB
						
					
					
				import numpy as np
 | 
						|
"""
 | 
						|
Coordinate transformation module. All methods accept arrays as input
 | 
						|
with each row as a position.
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
 | 
						|
a = 6378137
 | 
						|
b = 6356752.3142
 | 
						|
esq = 6.69437999014 * 0.001
 | 
						|
e1sq = 6.73949674228 * 0.001
 | 
						|
 | 
						|
 | 
						|
def geodetic2ecef(geodetic, radians=False):
 | 
						|
  geodetic = np.array(geodetic)
 | 
						|
  input_shape = geodetic.shape
 | 
						|
  geodetic = np.atleast_2d(geodetic)
 | 
						|
 | 
						|
  ratio = 1.0 if radians else (np.pi / 180.0)
 | 
						|
  lat = ratio*geodetic[:,0]
 | 
						|
  lon = ratio*geodetic[:,1]
 | 
						|
  alt = geodetic[:,2]
 | 
						|
 | 
						|
  xi = np.sqrt(1 - esq * np.sin(lat)**2)
 | 
						|
  x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
 | 
						|
  y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
 | 
						|
  z = (a / xi * (1 - esq) + alt) * np.sin(lat)
 | 
						|
  ecef = np.array([x, y, z]).T
 | 
						|
  return ecef.reshape(input_shape)
 | 
						|
 | 
						|
 | 
						|
def ecef2geodetic(ecef, radians=False):
 | 
						|
  """
 | 
						|
  Convert ECEF coordinates to geodetic using ferrari's method
 | 
						|
  """
 | 
						|
  # Save shape and export column
 | 
						|
  ecef = np.atleast_1d(ecef)
 | 
						|
  input_shape = ecef.shape
 | 
						|
  ecef = np.atleast_2d(ecef)
 | 
						|
  x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2]
 | 
						|
 | 
						|
  ratio = 1.0 if radians else (180.0 / np.pi)
 | 
						|
 | 
						|
  # Conver from ECEF to geodetic using Ferrari's methods
 | 
						|
  # https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
 | 
						|
  r = np.sqrt(x * x + y * y)
 | 
						|
  Esq = a * a - b * b
 | 
						|
  F = 54 * b * b * z * z
 | 
						|
  G = r * r + (1 - esq) * z * z - esq * Esq
 | 
						|
  C = (esq * esq * F * r * r) / (pow(G, 3))
 | 
						|
  S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
 | 
						|
  P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
 | 
						|
  Q = np.sqrt(1 + 2 * esq * esq * P)
 | 
						|
  r_0 =  -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
 | 
						|
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
 | 
						|
  U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
 | 
						|
  V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
 | 
						|
  Z_0 = b * b * z / (a * V)
 | 
						|
  h = U * (1 - b * b / (a * V))
 | 
						|
  lat = ratio*np.arctan((z + e1sq * Z_0) / r)
 | 
						|
  lon = ratio*np.arctan2(y, x)
 | 
						|
 | 
						|
  # stack the new columns and return to the original shape
 | 
						|
  geodetic = np.column_stack((lat, lon, h))
 | 
						|
  return geodetic.reshape(input_shape)
 | 
						|
 | 
						|
class LocalCoord(object):
 | 
						|
  """
 | 
						|
   Allows conversions to local frames. In this case NED.
 | 
						|
   That is: North East Down from the start position in
 | 
						|
   meters.
 | 
						|
  """
 | 
						|
  def __init__(self, init_geodetic, init_ecef):
 | 
						|
    self.init_ecef = init_ecef
 | 
						|
    lat, lon, _ = (np.pi/180)*np.array(init_geodetic)
 | 
						|
    self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)],
 | 
						|
                                     [-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
 | 
						|
                                     [np.cos(lat), 0, -np.sin(lat)]])
 | 
						|
    self.ecef2ned_matrix = self.ned2ecef_matrix.T
 | 
						|
 | 
						|
  @classmethod
 | 
						|
  def from_geodetic(cls, init_geodetic):
 | 
						|
    init_ecef = geodetic2ecef(init_geodetic)
 | 
						|
    return LocalCoord(init_geodetic, init_ecef)
 | 
						|
 | 
						|
  @classmethod
 | 
						|
  def from_ecef(cls, init_ecef):
 | 
						|
    init_geodetic = ecef2geodetic(init_ecef)
 | 
						|
    return LocalCoord(init_geodetic, init_ecef)
 | 
						|
 | 
						|
 | 
						|
  def ecef2ned(self, ecef):
 | 
						|
    ecef = np.array(ecef)
 | 
						|
    return np.dot(self.ecef2ned_matrix, (ecef - self.init_ecef).T).T
 | 
						|
 | 
						|
  def ned2ecef(self, ned):
 | 
						|
    ned = np.array(ned)
 | 
						|
    # Transpose so that init_ecef will broadcast correctly for 1d or 2d ned.
 | 
						|
    return (np.dot(self.ned2ecef_matrix, ned.T).T + self.init_ecef)
 | 
						|
 | 
						|
  def geodetic2ned(self, geodetic):
 | 
						|
    ecef = geodetic2ecef(geodetic)
 | 
						|
    return self.ecef2ned(ecef)
 | 
						|
 | 
						|
  def ned2geodetic(self, ned):
 | 
						|
    ecef = self.ned2ecef(ned)
 | 
						|
    return ecef2geodetic(ecef)
 | 
						|
 |