You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1574 lines
						
					
					
						
							61 KiB
						
					
					
				
			
		
		
	
	
							1574 lines
						
					
					
						
							61 KiB
						
					
					
				/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef __OPENCV_FEATURES_2D_HPP__
 | 
						|
#define __OPENCV_FEATURES_2D_HPP__
 | 
						|
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
#include <limits>
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
CV_EXPORTS bool initModule_features2d();
 | 
						|
 | 
						|
/*!
 | 
						|
 The Keypoint Class
 | 
						|
 | 
						|
 The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
 | 
						|
 Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.
 | 
						|
 | 
						|
 The keypoint is characterized by the 2D position, scale
 | 
						|
 (proportional to the diameter of the neighborhood that needs to be taken into account),
 | 
						|
 orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
 | 
						|
 (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
 | 
						|
 cv::KDTree or another method.
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W_SIMPLE KeyPoint
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
 | 
						|
    //! the full constructor
 | 
						|
    KeyPoint(Point2f _pt, float _size, float _angle=-1,
 | 
						|
            float _response=0, int _octave=0, int _class_id=-1)
 | 
						|
            : pt(_pt), size(_size), angle(_angle),
 | 
						|
            response(_response), octave(_octave), class_id(_class_id) {}
 | 
						|
    //! another form of the full constructor
 | 
						|
    CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
 | 
						|
            float _response=0, int _octave=0, int _class_id=-1)
 | 
						|
            : pt(x, y), size(_size), angle(_angle),
 | 
						|
            response(_response), octave(_octave), class_id(_class_id) {}
 | 
						|
 | 
						|
    size_t hash() const;
 | 
						|
 | 
						|
    //! converts vector of keypoints to vector of points
 | 
						|
    static void convert(const vector<KeyPoint>& keypoints,
 | 
						|
                        CV_OUT vector<Point2f>& points2f,
 | 
						|
                        const vector<int>& keypointIndexes=vector<int>());
 | 
						|
    //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
 | 
						|
    static void convert(const vector<Point2f>& points2f,
 | 
						|
                        CV_OUT vector<KeyPoint>& keypoints,
 | 
						|
                        float size=1, float response=1, int octave=0, int class_id=-1);
 | 
						|
 | 
						|
    //! computes overlap for pair of keypoints;
 | 
						|
    //! overlap is a ratio between area of keypoint regions intersection and
 | 
						|
    //! area of keypoint regions union (now keypoint region is circle)
 | 
						|
    static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
 | 
						|
 | 
						|
    CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
 | 
						|
    CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
 | 
						|
    CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
 | 
						|
                            //!< it's in [0,360) degrees and measured relative to
 | 
						|
                            //!< image coordinate system, ie in clockwise.
 | 
						|
    CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
 | 
						|
    CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
 | 
						|
    CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
 | 
						|
};
 | 
						|
 | 
						|
//! writes vector of keypoints to the file storage
 | 
						|
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
 | 
						|
//! reads vector of keypoints from the specified file storage node
 | 
						|
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
 | 
						|
 | 
						|
/*
 | 
						|
 * A class filters a vector of keypoints.
 | 
						|
 * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
 | 
						|
 * it has only several needed by now static methods.
 | 
						|
 */
 | 
						|
class CV_EXPORTS KeyPointsFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    KeyPointsFilter(){}
 | 
						|
 | 
						|
    /*
 | 
						|
     * Remove keypoints within borderPixels of an image edge.
 | 
						|
     */
 | 
						|
    static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
 | 
						|
    /*
 | 
						|
     * Remove keypoints of sizes out of range.
 | 
						|
     */
 | 
						|
    static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
 | 
						|
                                   float maxSize=FLT_MAX );
 | 
						|
    /*
 | 
						|
     * Remove keypoints from some image by mask for pixels of this image.
 | 
						|
     */
 | 
						|
    static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
 | 
						|
    /*
 | 
						|
     * Remove duplicated keypoints.
 | 
						|
     */
 | 
						|
    static void removeDuplicated( vector<KeyPoint>& keypoints );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Retain the specified number of the best keypoints (according to the response)
 | 
						|
     */
 | 
						|
    static void retainBest( vector<KeyPoint>& keypoints, int npoints );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/************************************ Base Classes ************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Abstract base class for 2D image feature detectors.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual ~FeatureDetector();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Detect keypoints in an image.
 | 
						|
     * image        The image.
 | 
						|
     * keypoints    The detected keypoints.
 | 
						|
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
 | 
						|
     *              matrix with non-zero values in the region of interest.
 | 
						|
     */
 | 
						|
    CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Detect keypoints in an image set.
 | 
						|
     * images       Image collection.
 | 
						|
     * keypoints    Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
 | 
						|
     * masks        Masks for image set. masks[i] is a mask for images[i].
 | 
						|
     */
 | 
						|
    void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
 | 
						|
 | 
						|
    // Return true if detector object is empty
 | 
						|
    CV_WRAP virtual bool empty() const;
 | 
						|
 | 
						|
    // Create feature detector by detector name.
 | 
						|
    CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Remove keypoints that are not in the mask.
 | 
						|
     * Helper function, useful when wrapping a library call for keypoint detection that
 | 
						|
     * does not support a mask argument.
 | 
						|
     */
 | 
						|
    static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Abstract base class for computing descriptors for image keypoints.
 | 
						|
 *
 | 
						|
 * In this interface we assume a keypoint descriptor can be represented as a
 | 
						|
 * dense, fixed-dimensional vector of some basic type. Most descriptors used
 | 
						|
 * in practice follow this pattern, as it makes it very easy to compute
 | 
						|
 * distances between descriptors. Therefore we represent a collection of
 | 
						|
 * descriptors as a Mat, where each row is one keypoint descriptor.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual ~DescriptorExtractor();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Compute the descriptors for a set of keypoints in an image.
 | 
						|
     * image        The image.
 | 
						|
     * keypoints    The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
 | 
						|
     * descriptors  Copmputed descriptors. Row i is the descriptor for keypoint i.
 | 
						|
     */
 | 
						|
    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Compute the descriptors for a keypoints collection detected in image collection.
 | 
						|
     * images       Image collection.
 | 
						|
     * keypoints    Input keypoints collection. keypoints[i] is keypoints detected in images[i].
 | 
						|
     *              Keypoints for which a descriptor cannot be computed are removed.
 | 
						|
     * descriptors  Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
 | 
						|
     */
 | 
						|
    void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
 | 
						|
 | 
						|
    CV_WRAP virtual int descriptorSize() const = 0;
 | 
						|
    CV_WRAP virtual int descriptorType() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual bool empty() const;
 | 
						|
 | 
						|
    CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Remove keypoints within borderPixels of an image edge.
 | 
						|
     */
 | 
						|
    static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
 | 
						|
                                      Size imageSize, int borderSize );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Abstract base class for simultaneous 2D feature detection descriptor extraction.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    /*
 | 
						|
     * Detect keypoints in an image.
 | 
						|
     * image        The image.
 | 
						|
     * keypoints    The detected keypoints.
 | 
						|
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
 | 
						|
     *              matrix with non-zero values in the region of interest.
 | 
						|
     * useProvidedKeypoints If true, the method will skip the detection phase and will compute
 | 
						|
     *                      descriptors for the provided keypoints
 | 
						|
     */
 | 
						|
    CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
 | 
						|
                                     CV_OUT vector<KeyPoint>& keypoints,
 | 
						|
                                     OutputArray descriptors,
 | 
						|
                                     bool useProvidedKeypoints=false ) const = 0;
 | 
						|
 | 
						|
    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
 | 
						|
 | 
						|
    // Create feature detector and descriptor extractor by name.
 | 
						|
    CV_WRAP static Ptr<Feature2D> create( const string& name );
 | 
						|
};
 | 
						|
 | 
						|
/*!
 | 
						|
  BRISK implementation
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W BRISK : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);
 | 
						|
 | 
						|
    virtual ~BRISK();
 | 
						|
 | 
						|
    // returns the descriptor size in bytes
 | 
						|
    int descriptorSize() const;
 | 
						|
    // returns the descriptor type
 | 
						|
    int descriptorType() const;
 | 
						|
 | 
						|
    // Compute the BRISK features on an image
 | 
						|
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
 | 
						|
 | 
						|
    // Compute the BRISK features and descriptors on an image
 | 
						|
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
 | 
						|
                      OutputArray descriptors, bool useProvidedKeypoints=false ) const;
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
    // custom setup
 | 
						|
    CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
 | 
						|
        float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());
 | 
						|
 | 
						|
    // call this to generate the kernel:
 | 
						|
    // circle of radius r (pixels), with n points;
 | 
						|
    // short pairings with dMax, long pairings with dMin
 | 
						|
    CV_WRAP void generateKernel(std::vector<float> &radiusList,
 | 
						|
        std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
 | 
						|
        std::vector<int> indexChange=std::vector<int>());
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
 | 
						|
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
 | 
						|
    void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
 | 
						|
                                       OutputArray descriptors, bool doDescriptors, bool doOrientation,
 | 
						|
                                       bool useProvidedKeypoints) const;
 | 
						|
 | 
						|
    // Feature parameters
 | 
						|
    CV_PROP_RW int threshold;
 | 
						|
    CV_PROP_RW int octaves;
 | 
						|
 | 
						|
    // some helper structures for the Brisk pattern representation
 | 
						|
    struct BriskPatternPoint{
 | 
						|
        float x;         // x coordinate relative to center
 | 
						|
        float y;         // x coordinate relative to center
 | 
						|
        float sigma;     // Gaussian smoothing sigma
 | 
						|
    };
 | 
						|
    struct BriskShortPair{
 | 
						|
        unsigned int i;  // index of the first pattern point
 | 
						|
        unsigned int j;  // index of other pattern point
 | 
						|
    };
 | 
						|
    struct BriskLongPair{
 | 
						|
        unsigned int i;  // index of the first pattern point
 | 
						|
        unsigned int j;  // index of other pattern point
 | 
						|
        int weighted_dx; // 1024.0/dx
 | 
						|
        int weighted_dy; // 1024.0/dy
 | 
						|
    };
 | 
						|
    inline int smoothedIntensity(const cv::Mat& image,
 | 
						|
                const cv::Mat& integral,const float key_x,
 | 
						|
                const float key_y, const unsigned int scale,
 | 
						|
                const unsigned int rot, const unsigned int point) const;
 | 
						|
    // pattern properties
 | 
						|
    BriskPatternPoint* patternPoints_;     //[i][rotation][scale]
 | 
						|
    unsigned int points_;                 // total number of collocation points
 | 
						|
    float* scaleList_;                     // lists the scaling per scale index [scale]
 | 
						|
    unsigned int* sizeList_;             // lists the total pattern size per scale index [scale]
 | 
						|
    static const unsigned int scales_;    // scales discretization
 | 
						|
    static const float scalerange_;     // span of sizes 40->4 Octaves - else, this needs to be adjusted...
 | 
						|
    static const unsigned int n_rot_;    // discretization of the rotation look-up
 | 
						|
 | 
						|
    // pairs
 | 
						|
    int strings_;                        // number of uchars the descriptor consists of
 | 
						|
    float dMax_;                         // short pair maximum distance
 | 
						|
    float dMin_;                         // long pair maximum distance
 | 
						|
    BriskShortPair* shortPairs_;         // d<_dMax
 | 
						|
    BriskLongPair* longPairs_;             // d>_dMin
 | 
						|
    unsigned int noShortPairs_;         // number of shortParis
 | 
						|
    unsigned int noLongPairs_;             // number of longParis
 | 
						|
 | 
						|
    // general
 | 
						|
    static const float basicSize_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*!
 | 
						|
 ORB implementation.
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W ORB : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    // the size of the signature in bytes
 | 
						|
    enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
 | 
						|
 | 
						|
    CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
 | 
						|
        int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );
 | 
						|
 | 
						|
    // returns the descriptor size in bytes
 | 
						|
    int descriptorSize() const;
 | 
						|
    // returns the descriptor type
 | 
						|
    int descriptorType() const;
 | 
						|
 | 
						|
    // Compute the ORB features and descriptors on an image
 | 
						|
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
 | 
						|
 | 
						|
    // Compute the ORB features and descriptors on an image
 | 
						|
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
 | 
						|
                     OutputArray descriptors, bool useProvidedKeypoints=false ) const;
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
 | 
						|
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    CV_PROP_RW int nfeatures;
 | 
						|
    CV_PROP_RW double scaleFactor;
 | 
						|
    CV_PROP_RW int nlevels;
 | 
						|
    CV_PROP_RW int edgeThreshold;
 | 
						|
    CV_PROP_RW int firstLevel;
 | 
						|
    CV_PROP_RW int WTA_K;
 | 
						|
    CV_PROP_RW int scoreType;
 | 
						|
    CV_PROP_RW int patchSize;
 | 
						|
};
 | 
						|
 | 
						|
typedef ORB OrbFeatureDetector;
 | 
						|
typedef ORB OrbDescriptorExtractor;
 | 
						|
 | 
						|
/*!
 | 
						|
  FREAK implementation
 | 
						|
*/
 | 
						|
class CV_EXPORTS FREAK : public DescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** Constructor
 | 
						|
         * @param orientationNormalized enable orientation normalization
 | 
						|
         * @param scaleNormalized enable scale normalization
 | 
						|
         * @param patternScale scaling of the description pattern
 | 
						|
         * @param nOctaves number of octaves covered by the detected keypoints
 | 
						|
         * @param selectedPairs (optional) user defined selected pairs
 | 
						|
    */
 | 
						|
    explicit FREAK( bool orientationNormalized = true,
 | 
						|
           bool scaleNormalized = true,
 | 
						|
           float patternScale = 22.0f,
 | 
						|
           int nOctaves = 4,
 | 
						|
           const vector<int>& selectedPairs = vector<int>());
 | 
						|
    FREAK( const FREAK& rhs );
 | 
						|
    FREAK& operator=( const FREAK& );
 | 
						|
 | 
						|
    virtual ~FREAK();
 | 
						|
 | 
						|
    /** returns the descriptor length in bytes */
 | 
						|
    virtual int descriptorSize() const;
 | 
						|
 | 
						|
    /** returns the descriptor type */
 | 
						|
    virtual int descriptorType() const;
 | 
						|
 | 
						|
    /** select the 512 "best description pairs"
 | 
						|
         * @param images grayscale images set
 | 
						|
         * @param keypoints set of detected keypoints
 | 
						|
         * @param corrThresh correlation threshold
 | 
						|
         * @param verbose print construction information
 | 
						|
         * @return list of best pair indexes
 | 
						|
    */
 | 
						|
    vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
 | 
						|
                      const double corrThresh = 0.7, bool verbose = true );
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
 | 
						|
    };
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
 | 
						|
    void buildPattern();
 | 
						|
    uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
 | 
						|
                         const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
 | 
						|
 | 
						|
    bool orientationNormalized; //true if the orientation is normalized, false otherwise
 | 
						|
    bool scaleNormalized; //true if the scale is normalized, false otherwise
 | 
						|
    double patternScale; //scaling of the pattern
 | 
						|
    int nOctaves; //number of octaves
 | 
						|
    bool extAll; // true if all pairs need to be extracted for pairs selection
 | 
						|
 | 
						|
    double patternScale0;
 | 
						|
    int nOctaves0;
 | 
						|
    vector<int> selectedPairs0;
 | 
						|
 | 
						|
    struct PatternPoint
 | 
						|
    {
 | 
						|
        float x; // x coordinate relative to center
 | 
						|
        float y; // x coordinate relative to center
 | 
						|
        float sigma; // Gaussian smoothing sigma
 | 
						|
    };
 | 
						|
 | 
						|
    struct DescriptionPair
 | 
						|
    {
 | 
						|
        uchar i; // index of the first point
 | 
						|
        uchar j; // index of the second point
 | 
						|
    };
 | 
						|
 | 
						|
    struct OrientationPair
 | 
						|
    {
 | 
						|
        uchar i; // index of the first point
 | 
						|
        uchar j; // index of the second point
 | 
						|
        int weight_dx; // dx/(norm_sq))*4096
 | 
						|
        int weight_dy; // dy/(norm_sq))*4096
 | 
						|
    };
 | 
						|
 | 
						|
    vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
 | 
						|
    int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
 | 
						|
    DescriptionPair descriptionPairs[NB_PAIRS];
 | 
						|
    OrientationPair orientationPairs[NB_ORIENPAIRS];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*!
 | 
						|
 Maximal Stable Extremal Regions class.
 | 
						|
 | 
						|
 The class implements MSER algorithm introduced by J. Matas.
 | 
						|
 Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
 | 
						|
 not the salient point detector.
 | 
						|
 | 
						|
 It returns the regions, each of those is encoded as a contour.
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W MSER : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the full constructor
 | 
						|
    CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
 | 
						|
          double _max_variation=0.25, double _min_diversity=.2,
 | 
						|
          int _max_evolution=200, double _area_threshold=1.01,
 | 
						|
          double _min_margin=0.003, int _edge_blur_size=5 );
 | 
						|
 | 
						|
    //! the operator that extracts the MSERs from the image or the specific part of it
 | 
						|
    CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
 | 
						|
                                        const Mat& mask=Mat() ) const;
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    int delta;
 | 
						|
    int minArea;
 | 
						|
    int maxArea;
 | 
						|
    double maxVariation;
 | 
						|
    double minDiversity;
 | 
						|
    int maxEvolution;
 | 
						|
    double areaThreshold;
 | 
						|
    double minMargin;
 | 
						|
    int edgeBlurSize;
 | 
						|
};
 | 
						|
 | 
						|
typedef MSER MserFeatureDetector;
 | 
						|
 | 
						|
/*!
 | 
						|
 The "Star" Detector.
 | 
						|
 | 
						|
 The class implements the keypoint detector introduced by K. Konolige.
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W StarDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the full constructor
 | 
						|
    CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
 | 
						|
                 int _lineThresholdProjected=10,
 | 
						|
                 int _lineThresholdBinarized=8,
 | 
						|
                 int _suppressNonmaxSize=5);
 | 
						|
 | 
						|
    //! finds the keypoints in the image
 | 
						|
    CV_WRAP_AS(detect) void operator()(const Mat& image,
 | 
						|
                CV_OUT vector<KeyPoint>& keypoints) const;
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    int maxSize;
 | 
						|
    int responseThreshold;
 | 
						|
    int lineThresholdProjected;
 | 
						|
    int lineThresholdBinarized;
 | 
						|
    int suppressNonmaxSize;
 | 
						|
};
 | 
						|
 | 
						|
//! detects corners using FAST algorithm by E. Rosten
 | 
						|
CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression=true );
 | 
						|
 | 
						|
CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression, int type );
 | 
						|
 | 
						|
class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    enum
 | 
						|
    { // Define it in old class to simplify migration to 2.5
 | 
						|
      TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
 | 
						|
    };
 | 
						|
 | 
						|
    CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    int threshold;
 | 
						|
    bool nonmaxSuppression;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CV_EXPORTS_W GFTTDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
 | 
						|
                          int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    int nfeatures;
 | 
						|
    double qualityLevel;
 | 
						|
    double minDistance;
 | 
						|
    int blockSize;
 | 
						|
    bool useHarrisDetector;
 | 
						|
    double k;
 | 
						|
};
 | 
						|
 | 
						|
typedef GFTTDetector GoodFeaturesToTrackDetector;
 | 
						|
typedef StarDetector StarFeatureDetector;
 | 
						|
 | 
						|
class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
  struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
  {
 | 
						|
      CV_WRAP Params();
 | 
						|
      CV_PROP_RW float thresholdStep;
 | 
						|
      CV_PROP_RW float minThreshold;
 | 
						|
      CV_PROP_RW float maxThreshold;
 | 
						|
      CV_PROP_RW size_t minRepeatability;
 | 
						|
      CV_PROP_RW float minDistBetweenBlobs;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByColor;
 | 
						|
      CV_PROP_RW uchar blobColor;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByArea;
 | 
						|
      CV_PROP_RW float minArea, maxArea;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByCircularity;
 | 
						|
      CV_PROP_RW float minCircularity, maxCircularity;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByInertia;
 | 
						|
      CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByConvexity;
 | 
						|
      CV_PROP_RW float minConvexity, maxConvexity;
 | 
						|
 | 
						|
      void read( const FileNode& fn );
 | 
						|
      void write( FileStorage& fs ) const;
 | 
						|
  };
 | 
						|
 | 
						|
  CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
 | 
						|
 | 
						|
  virtual void read( const FileNode& fn );
 | 
						|
  virtual void write( FileStorage& fs ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
  struct CV_EXPORTS Center
 | 
						|
  {
 | 
						|
      Point2d location;
 | 
						|
      double radius;
 | 
						|
      double confidence;
 | 
						|
  };
 | 
						|
 | 
						|
  virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
  virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> ¢ers) const;
 | 
						|
 | 
						|
  Params params;
 | 
						|
  AlgorithmInfo* info() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
 | 
						|
                                   float featureScaleMul=0.1f,
 | 
						|
                                   int initXyStep=6, int initImgBound=0,
 | 
						|
                                   bool varyXyStepWithScale=true,
 | 
						|
                                   bool varyImgBoundWithScale=false );
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    double initFeatureScale;
 | 
						|
    int featureScaleLevels;
 | 
						|
    double featureScaleMul;
 | 
						|
 | 
						|
    int initXyStep;
 | 
						|
    int initImgBound;
 | 
						|
 | 
						|
    bool varyXyStepWithScale;
 | 
						|
    bool varyImgBoundWithScale;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Adapts a detector to partition the source image into a grid and detect
 | 
						|
 * points in each cell.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    /*
 | 
						|
     * detector            Detector that will be adapted.
 | 
						|
     * maxTotalKeypoints   Maximum count of keypoints detected on the image. Only the strongest keypoints
 | 
						|
     *                      will be keeped.
 | 
						|
     * gridRows            Grid rows count.
 | 
						|
     * gridCols            Grid column count.
 | 
						|
     */
 | 
						|
    CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
 | 
						|
                                        int maxTotalKeypoints=1000,
 | 
						|
                                        int gridRows=4, int gridCols=4 );
 | 
						|
 | 
						|
    // TODO implement read/write
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    Ptr<FeatureDetector> detector;
 | 
						|
    int maxTotalKeypoints;
 | 
						|
    int gridRows;
 | 
						|
    int gridCols;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Adapts a detector to detect points over multiple levels of a Gaussian
 | 
						|
 * pyramid. Useful for detectors that are not inherently scaled.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    // maxLevel - The 0-based index of the last pyramid layer
 | 
						|
    CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );
 | 
						|
 | 
						|
    // TODO implement read/write
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    Ptr<FeatureDetector> detector;
 | 
						|
    int maxLevel;
 | 
						|
};
 | 
						|
 | 
						|
/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
 | 
						|
 *  and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
 | 
						|
 */
 | 
						|
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** pure virtual interface
 | 
						|
     */
 | 
						|
    virtual ~AdjusterAdapter() {}
 | 
						|
    /** too few features were detected so, adjust the detector params accordingly
 | 
						|
     * \param min the minimum number of desired features
 | 
						|
     * \param n_detected the number previously detected
 | 
						|
     */
 | 
						|
    virtual void tooFew(int min, int n_detected) = 0;
 | 
						|
    /** too many features were detected so, adjust the detector params accordingly
 | 
						|
     * \param max the maximum number of desired features
 | 
						|
     * \param n_detected the number previously detected
 | 
						|
     */
 | 
						|
    virtual void tooMany(int max, int n_detected) = 0;
 | 
						|
    /** are params maxed out or still valid?
 | 
						|
     * \return false if the parameters can't be adjusted any more
 | 
						|
     */
 | 
						|
    virtual bool good() const = 0;
 | 
						|
 | 
						|
    virtual Ptr<AdjusterAdapter> clone() const = 0;
 | 
						|
 | 
						|
    static Ptr<AdjusterAdapter> create( const string& detectorType );
 | 
						|
};
 | 
						|
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
 | 
						|
 * of features are detected.
 | 
						|
 *  Beware that this is not thread safe - as the adjustment of parameters breaks the const
 | 
						|
 *  of the detection routine...
 | 
						|
 *  /TODO Make this const correct and thread safe
 | 
						|
 *
 | 
						|
 *  sample usage:
 | 
						|
 //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
 | 
						|
 //FAST feature detection 10 times until that number of keypoints are found
 | 
						|
 Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));
 | 
						|
 | 
						|
 */
 | 
						|
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
 | 
						|
     *  \param max_features the maximum desired number of features
 | 
						|
     *  \param max_iters the maximum number of times to try to adjust the feature detector params
 | 
						|
     *          for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
 | 
						|
     *  \param min_features the minimum desired features
 | 
						|
     */
 | 
						|
    DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );
 | 
						|
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
private:
 | 
						|
    DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
 | 
						|
    DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);
 | 
						|
 | 
						|
    int escape_iters_;
 | 
						|
    int min_features_, max_features_;
 | 
						|
    const Ptr<AdjusterAdapter> adjuster_;
 | 
						|
};
 | 
						|
 | 
						|
/**\brief an adjust for the FAST detector. This will basically decrement or increment the
 | 
						|
 * threshold by 1
 | 
						|
 */
 | 
						|
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
 | 
						|
{
 | 
						|
public:
 | 
						|
    /**\param init_thresh the initial threshold to start with, default = 20
 | 
						|
     * \param nonmax whether to use non max or not for fast feature detection
 | 
						|
     * \param min_thresh
 | 
						|
     * \param max_thresh
 | 
						|
     */
 | 
						|
    FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);
 | 
						|
 | 
						|
    virtual void tooFew(int minv, int n_detected);
 | 
						|
    virtual void tooMany(int maxv, int n_detected);
 | 
						|
    virtual bool good() const;
 | 
						|
 | 
						|
    virtual Ptr<AdjusterAdapter> clone() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    int thresh_;
 | 
						|
    bool nonmax_;
 | 
						|
    int init_thresh_, min_thresh_, max_thresh_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
 | 
						|
 * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
 | 
						|
 */
 | 
						|
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
 | 
						|
{
 | 
						|
public:
 | 
						|
    StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);
 | 
						|
 | 
						|
    virtual void tooFew(int minv, int n_detected);
 | 
						|
    virtual void tooMany(int maxv, int n_detected);
 | 
						|
    virtual bool good() const;
 | 
						|
 | 
						|
    virtual Ptr<AdjusterAdapter> clone() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    double thresh_, init_thresh_, min_thresh_, max_thresh_;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
 | 
						|
{
 | 
						|
public:
 | 
						|
    SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );
 | 
						|
 | 
						|
    virtual void tooFew(int minv, int n_detected);
 | 
						|
    virtual void tooMany(int maxv, int n_detected);
 | 
						|
    virtual bool good() const;
 | 
						|
 | 
						|
    virtual Ptr<AdjusterAdapter> clone() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
 | 
						|
 | 
						|
    double thresh_, init_thresh_, min_thresh_, max_thresh_;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
 | 
						|
                                     float maxDeltaX, float maxDeltaY );
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * OpponentColorDescriptorExtractor
 | 
						|
 *
 | 
						|
 * Adapts a descriptor extractor to compute descriptors in Opponent Color Space
 | 
						|
 * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
 | 
						|
 * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
 | 
						|
 * (set in constructor) computes descriptors on each of the three channel and concatenate
 | 
						|
 * them into a single color descriptor.
 | 
						|
 */
 | 
						|
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );
 | 
						|
 | 
						|
    virtual void read( const FileNode& );
 | 
						|
    virtual void write( FileStorage& ) const;
 | 
						|
 | 
						|
    virtual int descriptorSize() const;
 | 
						|
    virtual int descriptorType() const;
 | 
						|
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
 | 
						|
 | 
						|
    Ptr<DescriptorExtractor> descriptorExtractor;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * BRIEF Descriptor
 | 
						|
 */
 | 
						|
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    static const int PATCH_SIZE = 48;
 | 
						|
    static const int KERNEL_SIZE = 9;
 | 
						|
 | 
						|
    // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
 | 
						|
    BriefDescriptorExtractor( int bytes = 32 );
 | 
						|
 | 
						|
    virtual void read( const FileNode& );
 | 
						|
    virtual void write( FileStorage& ) const;
 | 
						|
 | 
						|
    virtual int descriptorSize() const;
 | 
						|
    virtual int descriptorType() const;
 | 
						|
 | 
						|
    /// @todo read and write for brief
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;
 | 
						|
 | 
						|
    typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);
 | 
						|
 | 
						|
    int bytes_;
 | 
						|
    PixelTestFn test_fn_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      Distance                                          *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct CV_EXPORTS Accumulator
 | 
						|
{
 | 
						|
    typedef T Type;
 | 
						|
};
 | 
						|
 | 
						|
template<> struct Accumulator<unsigned char>  { typedef float Type; };
 | 
						|
template<> struct Accumulator<unsigned short> { typedef float Type; };
 | 
						|
template<> struct Accumulator<char>   { typedef float Type; };
 | 
						|
template<> struct Accumulator<short>  { typedef float Type; };
 | 
						|
 | 
						|
/*
 | 
						|
 * Squared Euclidean distance functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct CV_EXPORTS SL2
 | 
						|
{
 | 
						|
    enum { normType = NORM_L2SQR };
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return normL2Sqr<ValueType, ResultType>(a, b, size);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Euclidean distance functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct CV_EXPORTS L2
 | 
						|
{
 | 
						|
    enum { normType = NORM_L2 };
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Manhattan distance (city block distance) functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct CV_EXPORTS L1
 | 
						|
{
 | 
						|
    enum { normType = NORM_L1 };
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return normL1<ValueType, ResultType>(a, b, size);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 | 
						|
 * bit count of A exclusive XOR'ed with B
 | 
						|
 */
 | 
						|
struct CV_EXPORTS Hamming
 | 
						|
{
 | 
						|
    enum { normType = NORM_HAMMING };
 | 
						|
    typedef unsigned char ValueType;
 | 
						|
    typedef int ResultType;
 | 
						|
 | 
						|
    /** this will count the bits in a ^ b
 | 
						|
     */
 | 
						|
    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
 | 
						|
    {
 | 
						|
        return normHamming(a, b, size);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
typedef Hamming HammingLUT;
 | 
						|
 | 
						|
template<int cellsize> struct HammingMultilevel
 | 
						|
{
 | 
						|
    enum { normType = NORM_HAMMING + (cellsize>1) };
 | 
						|
    typedef unsigned char ValueType;
 | 
						|
    typedef int ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
 | 
						|
    {
 | 
						|
        return normHamming(a, b, size, cellsize);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      DMatch                                            *
 | 
						|
\****************************************************************************************/
 | 
						|
/*
 | 
						|
 * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
 | 
						|
 */
 | 
						|
struct CV_EXPORTS_W_SIMPLE DMatch
 | 
						|
{
 | 
						|
    CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
 | 
						|
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
 | 
						|
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
 | 
						|
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
 | 
						|
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
 | 
						|
 | 
						|
    CV_PROP_RW int queryIdx; // query descriptor index
 | 
						|
    CV_PROP_RW int trainIdx; // train descriptor index
 | 
						|
    CV_PROP_RW int imgIdx;   // train image index
 | 
						|
 | 
						|
    CV_PROP_RW float distance;
 | 
						|
 | 
						|
    // less is better
 | 
						|
    bool operator<( const DMatch &m ) const
 | 
						|
    {
 | 
						|
        return distance < m.distance;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                  DescriptorMatcher                                     *
 | 
						|
\****************************************************************************************/
 | 
						|
/*
 | 
						|
 * Abstract base class for matching two sets of descriptors.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual ~DescriptorMatcher();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Add descriptors to train descriptor collection.
 | 
						|
     * descriptors      Descriptors to add. Each descriptors[i] is a descriptors set from one image.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void add( const vector<Mat>& descriptors );
 | 
						|
    /*
 | 
						|
     * Get train descriptors collection.
 | 
						|
     */
 | 
						|
    CV_WRAP const vector<Mat>& getTrainDescriptors() const;
 | 
						|
    /*
 | 
						|
     * Clear train descriptors collection.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Return true if there are not train descriptors in collection.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool empty() const;
 | 
						|
    /*
 | 
						|
     * Return true if the matcher supports mask in match methods.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool isMaskSupported() const = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Train matcher (e.g. train flann index).
 | 
						|
     * In all methods to match the method train() is run every time before matching.
 | 
						|
     * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
 | 
						|
     * of this method, other matchers really train their inner structures
 | 
						|
     * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
 | 
						|
     * of train() should check the class object state and do traing/retraining
 | 
						|
     * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
 | 
						|
     * if it has not trained yet or if new descriptors have been added to the train
 | 
						|
     * collection).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void train();
 | 
						|
    /*
 | 
						|
     * Group of methods to match descriptors from image pair.
 | 
						|
     * Method train() is run in this methods.
 | 
						|
     */
 | 
						|
    // Find one best match for each query descriptor (if mask is empty).
 | 
						|
    CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
 | 
						|
                CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
 | 
						|
    // Find k best matches for each query descriptor (in increasing order of distances).
 | 
						|
    // compactResult is used when mask is not empty. If compactResult is false matches
 | 
						|
    // vector will have the same size as queryDescriptors rows. If compactResult is true
 | 
						|
    // matches vector will not contain matches for fully masked out query descriptors.
 | 
						|
    CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
 | 
						|
                   CV_OUT vector<vector<DMatch> >& matches, int k,
 | 
						|
                   const Mat& mask=Mat(), bool compactResult=false ) const;
 | 
						|
    // Find best matches for each query descriptor which have distance less than
 | 
						|
    // maxDistance (in increasing order of distances).
 | 
						|
    void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
 | 
						|
                      vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                      const Mat& mask=Mat(), bool compactResult=false ) const;
 | 
						|
    /*
 | 
						|
     * Group of methods to match descriptors from one image to image set.
 | 
						|
     * See description of similar methods for matching image pair above.
 | 
						|
     */
 | 
						|
    CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
 | 
						|
                const vector<Mat>& masks=vector<Mat>() );
 | 
						|
    CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
 | 
						|
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
    void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
 | 
						|
    // Reads matcher object from a file node
 | 
						|
    virtual void read( const FileNode& );
 | 
						|
    // Writes matcher object to a file storage
 | 
						|
    virtual void write( FileStorage& ) const;
 | 
						|
 | 
						|
    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
 | 
						|
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
 | 
						|
    // but with empty train data.
 | 
						|
    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
 | 
						|
 | 
						|
    CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
 | 
						|
protected:
 | 
						|
    /*
 | 
						|
     * Class to work with descriptors from several images as with one merged matrix.
 | 
						|
     * It is used e.g. in FlannBasedMatcher.
 | 
						|
     */
 | 
						|
    class CV_EXPORTS DescriptorCollection
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        DescriptorCollection();
 | 
						|
        DescriptorCollection( const DescriptorCollection& collection );
 | 
						|
        virtual ~DescriptorCollection();
 | 
						|
 | 
						|
        // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
 | 
						|
        void set( const vector<Mat>& descriptors );
 | 
						|
        virtual void clear();
 | 
						|
 | 
						|
        const Mat& getDescriptors() const;
 | 
						|
        const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
 | 
						|
        const Mat getDescriptor( int globalDescIdx ) const;
 | 
						|
        void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
 | 
						|
 | 
						|
        int size() const;
 | 
						|
 | 
						|
    protected:
 | 
						|
        Mat mergedDescriptors;
 | 
						|
        vector<int> startIdxs;
 | 
						|
    };
 | 
						|
 | 
						|
    // In fact the matching is implemented only by the following two methods. These methods suppose
 | 
						|
    // that the class object has been trained already. Public match methods call these methods
 | 
						|
    // after calling train().
 | 
						|
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
 | 
						|
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
 | 
						|
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
 | 
						|
 | 
						|
    static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
 | 
						|
    static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );
 | 
						|
 | 
						|
    static Mat clone_op( Mat m ) { return m.clone(); }
 | 
						|
    void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;
 | 
						|
 | 
						|
    // Collection of descriptors from train images.
 | 
						|
    vector<Mat> trainDescCollection;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Brute-force descriptor matcher.
 | 
						|
 *
 | 
						|
 * For each descriptor in the first set, this matcher finds the closest
 | 
						|
 * descriptor in the second set by trying each one.
 | 
						|
 *
 | 
						|
 * For efficiency, BruteForceMatcher is templated on the distance metric.
 | 
						|
 * For float descriptors, a common choice would be cv::L2<float>.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
 | 
						|
    virtual ~BFMatcher() {}
 | 
						|
 | 
						|
    virtual bool isMaskSupported() const { return true; }
 | 
						|
 | 
						|
    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
 | 
						|
 | 
						|
    AlgorithmInfo* info() const;
 | 
						|
protected:
 | 
						|
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
 | 
						|
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
 | 
						|
    int normType;
 | 
						|
    bool crossCheck;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                GenericDescriptorMatcher                                *
 | 
						|
\****************************************************************************************/
 | 
						|
/*
 | 
						|
 *   Abstract interface for a keypoint descriptor and matcher
 | 
						|
 */
 | 
						|
class GenericDescriptorMatcher;
 | 
						|
typedef GenericDescriptorMatcher GenericDescriptorMatch;
 | 
						|
 | 
						|
class CV_EXPORTS GenericDescriptorMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    GenericDescriptorMatcher();
 | 
						|
    virtual ~GenericDescriptorMatcher();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Add train collection: images and keypoints from them.
 | 
						|
     * images       A set of train images.
 | 
						|
     * ketpoints    Keypoint collection that have been detected on train images.
 | 
						|
     *
 | 
						|
     * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
 | 
						|
     * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
 | 
						|
     * If inheritor class need perform such prefiltering the method add() must be overloaded.
 | 
						|
     * In the other class methods programmer has access to the train keypoints by a constant link.
 | 
						|
     */
 | 
						|
    virtual void add( const vector<Mat>& images,
 | 
						|
                      vector<vector<KeyPoint> >& keypoints );
 | 
						|
 | 
						|
    const vector<Mat>& getTrainImages() const;
 | 
						|
    const vector<vector<KeyPoint> >& getTrainKeypoints() const;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Clear images and keypoints storing in train collection.
 | 
						|
     */
 | 
						|
    virtual void clear();
 | 
						|
    /*
 | 
						|
     * Returns true if matcher supports mask to match descriptors.
 | 
						|
     */
 | 
						|
    virtual bool isMaskSupported() = 0;
 | 
						|
    /*
 | 
						|
     * Train some inner structures (e.g. flann index or decision trees).
 | 
						|
     * train() methods is run every time in matching methods. So the method implementation
 | 
						|
     * should has a check whether these inner structures need be trained/retrained or not.
 | 
						|
     */
 | 
						|
    virtual void train();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Classifies query keypoints.
 | 
						|
     * queryImage    The query image
 | 
						|
     * queryKeypoints   Keypoints from the query image
 | 
						|
     * trainImage    The train image
 | 
						|
     * trainKeypoints   Keypoints from the train image
 | 
						|
     */
 | 
						|
    // Classify keypoints from query image under one train image.
 | 
						|
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                           const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
 | 
						|
    // Classify keypoints from query image under train image collection.
 | 
						|
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Group of methods to match keypoints from image pair.
 | 
						|
     * Keypoints for which a descriptor cannot be computed are removed.
 | 
						|
     * train() method is called here.
 | 
						|
     */
 | 
						|
    // Find one best match for each query descriptor (if mask is empty).
 | 
						|
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
 | 
						|
                vector<DMatch>& matches, const Mat& mask=Mat() ) const;
 | 
						|
    // Find k best matches for each query keypoint (in increasing order of distances).
 | 
						|
    // compactResult is used when mask is not empty. If compactResult is false matches
 | 
						|
    // vector will have the same size as queryDescriptors rows.
 | 
						|
    // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
 | 
						|
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                   const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
 | 
						|
                   vector<vector<DMatch> >& matches, int k,
 | 
						|
                   const Mat& mask=Mat(), bool compactResult=false ) const;
 | 
						|
    // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
 | 
						|
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                      const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
 | 
						|
                      vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                      const Mat& mask=Mat(), bool compactResult=false ) const;
 | 
						|
    /*
 | 
						|
     * Group of methods to match keypoints from one image to image set.
 | 
						|
     * See description of similar methods for matching image pair above.
 | 
						|
     */
 | 
						|
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
 | 
						|
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                   vector<vector<DMatch> >& matches, int k,
 | 
						|
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                      vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                      const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
 | 
						|
 | 
						|
    // Reads matcher object from a file node
 | 
						|
    virtual void read( const FileNode& fn );
 | 
						|
    // Writes matcher object to a file storage
 | 
						|
    virtual void write( FileStorage& fs ) const;
 | 
						|
 | 
						|
    // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
 | 
						|
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
 | 
						|
    // but with empty train data.
 | 
						|
    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
 | 
						|
 | 
						|
    static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
 | 
						|
                                                 const string ¶msFilename=string() );
 | 
						|
 | 
						|
protected:
 | 
						|
    // In fact the matching is implemented only by the following two methods. These methods suppose
 | 
						|
    // that the class object has been trained already. Public match methods call these methods
 | 
						|
    // after calling train().
 | 
						|
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                               vector<vector<DMatch> >& matches, int k,
 | 
						|
                               const vector<Mat>& masks, bool compactResult ) = 0;
 | 
						|
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                                  vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                                  const vector<Mat>& masks, bool compactResult ) = 0;
 | 
						|
    /*
 | 
						|
     * A storage for sets of keypoints together with corresponding images and class IDs
 | 
						|
     */
 | 
						|
    class CV_EXPORTS KeyPointCollection
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        KeyPointCollection();
 | 
						|
        KeyPointCollection( const KeyPointCollection& collection );
 | 
						|
        void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
 | 
						|
        void clear();
 | 
						|
 | 
						|
        // Returns the total number of keypoints in the collection
 | 
						|
        size_t keypointCount() const;
 | 
						|
        size_t imageCount() const;
 | 
						|
 | 
						|
        const vector<vector<KeyPoint> >& getKeypoints() const;
 | 
						|
        const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
 | 
						|
        const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
 | 
						|
        const KeyPoint& getKeyPoint( int globalPointIdx ) const;
 | 
						|
        void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;
 | 
						|
 | 
						|
        const vector<Mat>& getImages() const;
 | 
						|
        const Mat& getImage( int imgIdx ) const;
 | 
						|
 | 
						|
    protected:
 | 
						|
        int pointCount;
 | 
						|
 | 
						|
        vector<Mat> images;
 | 
						|
        vector<vector<KeyPoint> > keypoints;
 | 
						|
        // global indices of the first points in each image, startIndices.size() = keypoints.size()
 | 
						|
        vector<int> startIndices;
 | 
						|
 | 
						|
    private:
 | 
						|
        static Mat clone_op( Mat m ) { return m.clone(); }
 | 
						|
    };
 | 
						|
 | 
						|
    KeyPointCollection trainPointCollection;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                VectorDescriptorMatcher                                 *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 *  A class used for matching descriptors that can be described as vectors in a finite-dimensional space
 | 
						|
 */
 | 
						|
class VectorDescriptorMatcher;
 | 
						|
typedef VectorDescriptorMatcher VectorDescriptorMatch;
 | 
						|
 | 
						|
class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
 | 
						|
    virtual ~VectorDescriptorMatcher();
 | 
						|
 | 
						|
    virtual void add( const vector<Mat>& imgCollection,
 | 
						|
                      vector<vector<KeyPoint> >& pointCollection );
 | 
						|
 | 
						|
    virtual void clear();
 | 
						|
 | 
						|
    virtual void train();
 | 
						|
 | 
						|
    virtual bool isMaskSupported();
 | 
						|
 | 
						|
    virtual void read( const FileNode& fn );
 | 
						|
    virtual void write( FileStorage& fs ) const;
 | 
						|
    virtual bool empty() const;
 | 
						|
 | 
						|
    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                               vector<vector<DMatch> >& matches, int k,
 | 
						|
                               const vector<Mat>& masks, bool compactResult );
 | 
						|
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
 | 
						|
                                  vector<vector<DMatch> >& matches, float maxDistance,
 | 
						|
                                  const vector<Mat>& masks, bool compactResult );
 | 
						|
 | 
						|
    Ptr<DescriptorExtractor> extractor;
 | 
						|
    Ptr<DescriptorMatcher> matcher;
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Drawing functions                                    *
 | 
						|
\****************************************************************************************/
 | 
						|
struct CV_EXPORTS DrawMatchesFlags
 | 
						|
{
 | 
						|
    enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
 | 
						|
                       // i.e. existing memory of output image may be reused.
 | 
						|
                       // Two source image, matches and single keypoints will be drawn.
 | 
						|
                       // For each keypoint only the center point will be drawn (without
 | 
						|
                       // the circle around keypoint with keypoint size and orientation).
 | 
						|
          DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
 | 
						|
                                // Matches will be drawn on existing content of output image.
 | 
						|
          NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
 | 
						|
          DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
 | 
						|
                                  // orientation will be drawn.
 | 
						|
        };
 | 
						|
};
 | 
						|
 | 
						|
// Draw keypoints.
 | 
						|
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
 | 
						|
                               const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
// Draws matches of keypints from two images on output image.
 | 
						|
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
 | 
						|
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
 | 
						|
                             const vector<DMatch>& matches1to2, Mat& outImg,
 | 
						|
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 | 
						|
                             const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
 | 
						|
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
 | 
						|
                             const vector<vector<DMatch> >& matches1to2, Mat& outImg,
 | 
						|
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 | 
						|
                             const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
 | 
						|
                                         vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
 | 
						|
                                         float& repeatability, int& correspCount,
 | 
						|
                                         const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
 | 
						|
 | 
						|
CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
 | 
						|
                                             const vector<vector<uchar> >& correctMatches1to2Mask,
 | 
						|
                                             vector<Point2f>& recallPrecisionCurve );
 | 
						|
 | 
						|
CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
 | 
						|
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );
 | 
						|
 | 
						|
CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
 | 
						|
                                                  vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
 | 
						|
                                                  vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
 | 
						|
                                                  vector<Point2f>& recallPrecisionCurve,
 | 
						|
                                                  const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                     Bag of visual words                                *
 | 
						|
\****************************************************************************************/
 | 
						|
/*
 | 
						|
 * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWTrainer
 | 
						|
{
 | 
						|
public:
 | 
						|
    BOWTrainer();
 | 
						|
    virtual ~BOWTrainer();
 | 
						|
 | 
						|
    CV_WRAP void add( const Mat& descriptors );
 | 
						|
    CV_WRAP const vector<Mat>& getDescriptors() const;
 | 
						|
    CV_WRAP int descripotorsCount() const;
 | 
						|
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Train visual words vocabulary, that is cluster training descriptors and
 | 
						|
     * compute cluster centers.
 | 
						|
     * Returns cluster centers.
 | 
						|
     *
 | 
						|
     * descriptors      Training descriptors computed on images keypoints.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat cluster() const = 0;
 | 
						|
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
 | 
						|
 | 
						|
protected:
 | 
						|
    vector<Mat> descriptors;
 | 
						|
    int size;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This is BOWTrainer using cv::kmeans to get vocabulary.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
 | 
						|
                      int attempts=3, int flags=KMEANS_PP_CENTERS );
 | 
						|
    virtual ~BOWKMeansTrainer();
 | 
						|
 | 
						|
    // Returns trained vocabulary (i.e. cluster centers).
 | 
						|
    CV_WRAP virtual Mat cluster() const;
 | 
						|
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    int clusterCount;
 | 
						|
    TermCriteria termcrit;
 | 
						|
    int attempts;
 | 
						|
    int flags;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Class to compute image descriptor using bag of visual words.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWImgDescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
 | 
						|
                               const Ptr<DescriptorMatcher>& dmatcher );
 | 
						|
    virtual ~BOWImgDescriptorExtractor();
 | 
						|
 | 
						|
    CV_WRAP void setVocabulary( const Mat& vocabulary );
 | 
						|
    CV_WRAP const Mat& getVocabulary() const;
 | 
						|
    void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
 | 
						|
                  vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
 | 
						|
    // compute() is not constant because DescriptorMatcher::match is not constant
 | 
						|
 | 
						|
    CV_WRAP_AS(compute) void compute2( const Mat& image, vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
 | 
						|
    { compute(image,keypoints,imgDescriptor); }
 | 
						|
 | 
						|
    CV_WRAP int descriptorSize() const;
 | 
						|
    CV_WRAP int descriptorType() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    Mat vocabulary;
 | 
						|
    Ptr<DescriptorExtractor> dextractor;
 | 
						|
    Ptr<DescriptorMatcher> dmatcher;
 | 
						|
};
 | 
						|
 | 
						|
} /* namespace cv */
 | 
						|
 | 
						|
#endif /* __cplusplus */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* End of file. */
 | 
						|
 |