dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

496 lines
19 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/objective/objective.hpp
* \author Boris Houska, Hans Joachim Ferreau, Milan Vukov
*
*/
#ifndef ACADO_TOOLKIT_OBJECTIVE_HPP
#define ACADO_TOOLKIT_OBJECTIVE_HPP
#include <acado/objective/lagrange_term.hpp>
#include <acado/objective/lsq_term.hpp>
#include <acado/objective/lsq_end_term.hpp>
#include <acado/objective/mayer_term.hpp>
#include <acado/constraint/constraint.hpp>
BEGIN_NAMESPACE_ACADO
/** An LSQ element data type used for code generation. */
struct LsqData
{
LsqData(const DMatrix& _WW, const Function& _hh, bool _givenW = true)
: W( _WW ), h( _hh ), givenW( _givenW )
{}
/** A weighting matrix. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix W;
/** An LSQ underlying function. */
Function h;
/** Indicator, \sa W */
bool givenW;
};
/** A vector of LSQ data elements. */
typedef std::vector< LsqData > LsqElements;
/** An extern LSQ element data type, i.e. the function is defined externally. */
struct LsqExternData
{
LsqExternData(const DMatrix& _WW, const std::string& _hh, bool _givenW = true)
: W( _WW ), h( _hh ), givenW( _givenW )
{}
/** A weighting matrix. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix W;
/** An LSQ underlying function. */
std::string h;
/** Indicator, \sa W */
bool givenW;
};
/** A vector of externally defined LSQ data elements. */
typedef std::vector< LsqExternData > LsqExternElements;
/** An LSQ element data type used for code generation. */
struct LsqLinearData
{
LsqLinearData(const DVector& _Wlx, const DVector& _Wlu, bool _givenW = true)
: Wlx( _Wlx ), Wlu( _Wlu ), givenW( _givenW )
{}
/** Weighting vectors. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix Wlx, Wlu;
/** Indicator. */
bool givenW;
};
/** A vector of LSQ data linear elements. */
typedef std::vector< LsqLinearData > LsqLinearElements;
/**
* \brief Stores and evaluates the objective function of optimal control problems.
*
* \ingroup BasicDataStructures
*
* The class Objective is class is designed to formulate
* objecive functionals that can be part of an optimal
* control problem (OCP).
* Mainly, an objective can have additive terms with
* different structures that can be added by using
* various routines that are implemented in this class
*
* Note that a this class is derived from the class
* LagrangeTerm while it has Mayer and LSQ-Terms as
* a member. The reason for this assymmetry is that a
* Lagrange - term will be reformulated as a Mayer term as
* soon as the function init( ... ) is called. (I.e. the
* class LagrangeTerm is only used a kind of temporary
* memory to store Expressions that are added by the
* user.)
*
* \author Boris Houska, Hans Joachim Ferreau, Milan Vukov
*/
class Objective : public LagrangeTerm
{
//
// PUBLIC MEMBER FUNCTIONS:
//
public:
/** Default constructor. */
Objective( );
/** Default constructor. */
Objective( const Grid &grid_ );
/** Copy constructor (deep copy). */
Objective( const Objective& rhs );
/** Destructor. */
virtual ~Objective( );
/** Assignment operator (deep copy). */
Objective& operator=( const Objective& rhs );
/** Sets the discretization grid. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue init( const Grid &grid_ );
// =======================================================================================
//
// LOADING ROUTINES
//
// =======================================================================================
/** Adds an expression for the Mayer term.
* \return SUCCESSFUL_RETURN
*/
inline returnValue addMayerTerm( const Expression& arg );
inline returnValue addMayerTerm( const Function& arg );
/** Adds an Least Square term of the general form \n
* \n
* 0.5* sum_i || h(t_i,x(t_i),u(t_i),p(t_i),...) - r_i ||^2_S_i \n
* \n
* Here, the matrices S_i and the reference vectors r_i should be given \n
* in MatrixVariablesGrid and VariablesGrid format respectively. If S_ is \n
* a NULL-pointer the matrices S_i will be unit matrices. If r_ is a \n
* a NULL-pointer the reference will be equal to zero by default. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue addLSQ( const MatrixVariablesGrid *S_, /**< the weighting matrix */
const Function& h , /**< the LSQ function */
const VariablesGrid *r_ /**< the reference vectors */ );
/** Adds an Least Square term that is only evaluated at the end: \n
* \n
* 0.5* || m(T,x(T),p,...) - r ||^2_S \n
* \n
* where S is a weighting matrix, r a reference vector and T the time \n
* at the last objective grid point. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue addLSQEndTerm( const DMatrix & S, /**< a weighting matrix */
const Function & m, /**< the LSQ-Function */
const DVector & r /**< the reference */ );
//
// Code generation related functions
//
returnValue addLSQ(const DMatrix& S, const Function& h);
returnValue addLSQEndTerm(const DMatrix& S, const Function& h);
returnValue addLSQ(const DMatrix& S, const std::string& h);
returnValue addLSQEndTerm(const DMatrix& S, const std::string& h);
returnValue addLSQ(const BMatrix& S, const Function& h);
returnValue addLSQEndTerm(const BMatrix& S, const Function& h);
returnValue addLSQ(const BMatrix& S, const std::string& h);
returnValue addLSQEndTerm(const BMatrix& S, const std::string& h);
returnValue addLSQLinearTerms(const DVector& Slx, const DVector& Slu);
returnValue addLSQLinearTerms(const BVector& Slx, const BVector& Slu);
// =======================================================================================
//
// INITIALIZATION ROUTINES
//
// =======================================================================================
/** Initializes the objective and reformulates Lagrange-Terms if \n
* there are any. The RHS function that is passed in the argument \n
* will be augmented by one component if there is a Lagrange term. If \n
* the RHS function is NULL but there is Lagrange term then the \n
* routine will allocate memory for fcn and add one component !! \n
* \n
* \param nStages the number of stages \n
* \param nTransitions the number of transitions \n
* \param fcn the right-hand side functions \n
* \param transitions the transition functions \n
* \param constraint_ the constraint (to be reformulated) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue init( const int nStages ,
const int nTransitions,
DifferentialEquation **fcn ,
Transition *transitions ,
Constraint *constraint_ );
// =======================================================================================
//
// DEFINITION OF SEEDS:
//
// =======================================================================================
/** Define a forward seed in form of a block matrix. \n
* \n
* \return SUCCESFUL RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setForwardSeed( BlockMatrix *xSeed_ , /**< the seed in x -direction */
BlockMatrix *xaSeed_, /**< the seed in xa-direction */
BlockMatrix *pSeed_ , /**< the seed in p -direction */
BlockMatrix *uSeed_ , /**< the seed in u -direction */
BlockMatrix *wSeed_ , /**< the seed in w -direction */
int order /**< the order of the seed. */ );
/** Define a backward seed in form of a block matrix. \n
* \n
* \return SUCCESFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setBackwardSeed( BlockMatrix *seed, /**< the seed matrix */
int order /**< the order of the seed.*/ );
/** Defines the first order backward seed to be \n
* a unit matrix. \n
* \n
* \return SUCCESFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setUnitBackwardSeed( );
// =======================================================================================
//
// EVALUATION ROUTINES
//
// =======================================================================================
/** Evaluates the objective with all its terms. \n
* \n
* \return SUCCESSFUL_RETURN if the evaluation was successful. \n
* of an error message if unsuccessful. \n
*/
returnValue evaluate( const OCPiterate &x );
/** Evaluates the objective gradient. (please use evaluate to specify \n
* the evaluation point) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivities();
/** Evaluates the objective gradient and the associated Hessian. \n
* (please use evaluate to specify the evaluation point) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivities( BlockMatrix &hessian );
/** Evaluates the objective gradient. (please use evaluate to specify \n
* the evaluation point) \n
* in addition a Gauss-Newton hessian approximation is provided \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_GAUSS_NEWTON_APPROXIMATION_NOT_SUPPORTED \n
*/
returnValue evaluateSensitivitiesGN( BlockMatrix &hessian );
// =======================================================================================
//
// RESULTS OF THE EVALUATION
//
// =======================================================================================
/** Returns the result for the residuum of the bounds. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue getObjectiveValue( double &objectiveValue );
/** Returns the result for the forward sensitivities in BlockMatrix form. \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue getForwardSensitivities( BlockMatrix &D /**< the result for the
* forward sensitivi-
* ties */,
int order /**< the order */ );
/** Returns the result for the backward sensitivities in BlockMatrix form. \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue getBackwardSensitivities( BlockMatrix &D /**< the result for the
* forward sensitivi-
* ties */,
int order /**< the order */ );
// =======================================================================================
//
// DIMENSIONS
//
// =======================================================================================
/** Returns the number of differential states \n
* \return The requested number of differential states. \n
*/
inline int getNX () const;
/** Returns the number of algebraic states \n
* \return The requested number of algebraic states. \n
*/
inline int getNXA () const;
/** Returns the number of parameters \n
* \return The requested number of parameters. \n
*/
inline int getNP () const;
/** Returns the number of controls \n
* \return The requested number of controls. \n
*/
inline int getNU () const;
/** Returns the number of disturbances \n
* \return The requested number of disturbances. \n
*/
inline int getNW () const;
// =======================================================================================
/** Asks the objective whether all terms have Least-Square form. If the \n
* returned answer is "BT_TRUE", the computation of Gauss-Newton hessian \n
* approximation is supported. \n
* \n
* \return BT_TRUE if all objective terms have LSQ form. \n
*/
inline BooleanType hasLSQform();
/** returns whether the constraint element is affine. */
inline BooleanType isAffine();
/** returns whether the objective is quadratic. */
inline BooleanType isQuadratic();
/** returns whether the objective is convex. */
inline BooleanType isConvex();
/** overwrites the reference (only for LSQ tracking objectives) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
inline returnValue setReference( const VariablesGrid &ref );
/** Returns whether or not the objective is empty. \n
* \n
* \return BT_TRUE if no objective is specified yet. \n
* BT_FALSE otherwise. \n
*/
BooleanType isEmpty() const;
/** \name Code generation related functions.
* @{ */
returnValue getLSQTerms( LsqElements& _elements ) const;
returnValue getLSQEndTerms( LsqElements& _elements ) const;
returnValue getLSQTerms( LsqExternElements& _elements ) const;
returnValue getLSQEndTerms( LsqExternElements& _elements ) const;
returnValue getLSQLinearTerms( LsqLinearElements& _elements ) const;
/** @} */
uint getNumMayerTerms( ) const;
uint getNumLagrangeTerms( ) const;
returnValue getMayerTerm( uint index, Function& mayerTerm ) const;
returnValue getLagrangeTerm( uint index, Function& lagrangeTerm ) const;
//
// DATA MEMBERS:
//
protected:
LSQTerm **lsqTerm ; /**< The Least Square Terms. */
LSQEndTerm **lsqEndTerm; /**< The Least Square End Terms. */
MayerTerm **mayerTerm ; /**< The Mayer Terms. */
uint nLSQ ; /**< number of LSQ terms */
uint nEndLSQ ; /**< number of end LSQ terms */
uint nMayer ; /**< number of Mayer terms */
LsqElements cgLsqElements;
LsqElements cgLsqEndTermElements;
LsqExternElements cgExternLsqElements;
LsqExternElements cgExternLsqEndTermElements;
LsqLinearElements cgLsqLinearElements;
};
CLOSE_NAMESPACE_ACADO
#include <acado/objective/objective.ipp>
#endif // ACADO_TOOLKIT_OBJECTIVE_HPP
/*
* end of file
*/