dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

108 lines
3.3 KiB

#include "acado_common.h"
#include "acado_auxiliary_functions.h"
#include "common/modeldata.h"
#include <stdio.h>
#include <math.h>
#define NX ACADO_NX /* Number of differential state variables. */
#define NXA ACADO_NXA /* Number of algebraic variables. */
#define NU ACADO_NU /* Number of control inputs. */
#define NOD ACADO_NOD /* Number of online data values. */
#define NY ACADO_NY /* Number of measurements/references on nodes 0..N - 1. */
#define NYN ACADO_NYN /* Number of measurements/references on node N. */
#define N ACADO_N /* Number of intervals in the horizon. */
ACADOvariables acadoVariables;
ACADOworkspace acadoWorkspace;
typedef struct {
double x_ego, v_ego, a_ego;
} state_t;
typedef struct {
double x_ego[N+1];
double v_ego[N+1];
double a_ego[N+1];
double t[N+1];
double j_ego[N];
double cost;
} log_t;
void init(double xCost, double vCost, double aCost, double jerkCost, double constraintCost){
acado_initializeSolver();
int i;
const int STEP_MULTIPLIER = 3;
/* Initialize the states and controls. */
for (i = 0; i < NX * (N + 1); ++i) acadoVariables.x[ i ] = 0.0;
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;
/* Initialize the measurements/reference. */
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
/* MPC: initialize the current state feedback. */
for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
// Set weights
for (i = 0; i < N; i++) {
double f = 20 * (T_IDXS[i+1] - T_IDXS[i]);
// Setup diagonal entries
acadoVariables.W[NY*NY*i + (NY+1)*0] = xCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*1] = vCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*2] = aCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*3] = jerkCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*4] = constraintCost * f;
}
acadoVariables.WN[(NYN+1)*0] = xCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*1] = vCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*2] = aCost * STEP_MULTIPLIER;
}
int run_mpc(state_t * x0, log_t * solution,
double target_x[N+1], double target_v[N+1], double target_a[N+1],
double min_a, double max_a){
int i;
for (i = 0; i < N + 1; ++i){
acadoVariables.od[i*NOD] = min_a;
acadoVariables.od[i*NOD+1] = max_a;
}
for (i = 0; i < N; i+= 1){
acadoVariables.y[NY*i + 0] = target_x[i];
acadoVariables.y[NY*i + 1] = target_v[i];
acadoVariables.y[NY*i + 2] = target_a[i];
acadoVariables.y[NY*i + 3] = 0.0;
acadoVariables.y[NY*i + 4] = 0.0;
}
acadoVariables.yN[0] = target_x[N];
acadoVariables.yN[1] = target_v[N];
acadoVariables.yN[2] = target_a[N];
acadoVariables.x0[0] = x0->x_ego;
acadoVariables.x0[1] = x0->v_ego;
acadoVariables.x0[2] = x0->a_ego;
acado_preparationStep();
acado_feedbackStep();
for (i = 0; i <= N; i++) {
solution->x_ego[i] = acadoVariables.x[i*NX];
solution->v_ego[i] = acadoVariables.x[i*NX+1];
solution->a_ego[i] = acadoVariables.x[i*NX+2];
if (i < N) {
solution->j_ego[i] = acadoVariables.u[i*NU];
}
}
solution->cost = acado_getObjective();
// Dont shift states here. Current solution is closer to next timestep than if
// we shift by 0.1 seconds.
return acado_getNWSR();
}