You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							63 lines
						
					
					
						
							2.4 KiB
						
					
					
				
			
		
		
	
	
							63 lines
						
					
					
						
							2.4 KiB
						
					
					
				import numpy as np
 | 
						|
 | 
						|
from openpilot.common.transformations.orientation import rot_from_euler
 | 
						|
from openpilot.common.transformations.camera import get_view_frame_from_calib_frame, view_frame_from_device_frame
 | 
						|
 | 
						|
# segnet
 | 
						|
SEGNET_SIZE = (512, 384)
 | 
						|
 | 
						|
# MED model
 | 
						|
MEDMODEL_INPUT_SIZE = (512, 256)
 | 
						|
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
MEDMODEL_CY = 47.6
 | 
						|
 | 
						|
medmodel_fl = 910.0
 | 
						|
medmodel_intrinsics = np.array([
 | 
						|
  [medmodel_fl,  0.0,  0.5 * MEDMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  medmodel_fl,                   MEDMODEL_CY],
 | 
						|
  [0.0,  0.0,                                   1.0]])
 | 
						|
 | 
						|
 | 
						|
# BIG model
 | 
						|
BIGMODEL_INPUT_SIZE = (1024, 512)
 | 
						|
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
 | 
						|
bigmodel_fl = 910.0
 | 
						|
bigmodel_intrinsics = np.array([
 | 
						|
  [bigmodel_fl,  0.0,  0.5 * BIGMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  bigmodel_fl,             256 + MEDMODEL_CY],
 | 
						|
  [0.0,  0.0,                                   1.0]])
 | 
						|
 | 
						|
 | 
						|
# SBIG model (big model with the size of small model)
 | 
						|
SBIGMODEL_INPUT_SIZE = (512, 256)
 | 
						|
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
 | 
						|
sbigmodel_fl = 455.0
 | 
						|
sbigmodel_intrinsics = np.array([
 | 
						|
  [sbigmodel_fl,  0.0,  0.5 * SBIGMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  sbigmodel_fl,      0.5 * (256 + MEDMODEL_CY)],
 | 
						|
  [0.0,  0.0,                                     1.0]])
 | 
						|
 | 
						|
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
 | 
						|
sbigmodel_frame_from_calib_frame = np.dot(sbigmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
 | 
						|
 | 
						|
calib_from_medmodel = np.linalg.inv(medmodel_frame_from_calib_frame[:, :3])
 | 
						|
calib_from_sbigmodel = np.linalg.inv(sbigmodel_frame_from_calib_frame[:, :3])
 | 
						|
 | 
						|
# This function is verified to give similar results to xx.uncommon.utils.transform_img
 | 
						|
def get_warp_matrix(device_from_calib_euler: np.ndarray, intrinsics: np.ndarray, bigmodel_frame: bool = False) -> np.ndarray:
 | 
						|
  calib_from_model = calib_from_sbigmodel if bigmodel_frame else calib_from_medmodel
 | 
						|
  device_from_calib = rot_from_euler(device_from_calib_euler)
 | 
						|
  camera_from_calib = intrinsics @ view_frame_from_device_frame @ device_from_calib
 | 
						|
  warp_matrix: np.ndarray = camera_from_calib @ calib_from_model
 | 
						|
  return warp_matrix
 | 
						|
 |