You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							120 lines
						
					
					
						
							5.0 KiB
						
					
					
				
			
		
		
	
	
							120 lines
						
					
					
						
							5.0 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import psutil
 | 
						|
import time
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import numpy as np
 | 
						|
import argparse
 | 
						|
import re
 | 
						|
from collections import defaultdict
 | 
						|
 | 
						|
'''
 | 
						|
System tools like top/htop can only show current cpu usage values, so I write this script to do statistics jobs.
 | 
						|
  Features:
 | 
						|
    Use psutil library to sample cpu usage(avergage for all cores) of OpenPilot processes, at a rate of 5 samples/sec.
 | 
						|
    Do cpu usage statistics periodically, 5 seconds as a cycle.
 | 
						|
    Caculate the average cpu usage within this cycle.
 | 
						|
    Caculate minumium/maximium/accumulated_average cpu usage as long term inspections.
 | 
						|
    Monitor multiple processes simuteneously.
 | 
						|
  Sample usage:
 | 
						|
    root@localhost:/data/openpilot$ python selfdrive/debug/cpu_usage_stat.py boardd,ubloxd
 | 
						|
    ('Add monitored proc:', './boardd')
 | 
						|
    ('Add monitored proc:', 'python locationd/ubloxd.py')
 | 
						|
    boardd: 1.96%, min: 1.96%, max: 1.96%, acc: 1.96%
 | 
						|
    ubloxd.py: 0.39%, min: 0.39%, max: 0.39%, acc: 0.39%
 | 
						|
'''
 | 
						|
 | 
						|
# Do statistics every 5 seconds
 | 
						|
PRINT_INTERVAL = 5
 | 
						|
SLEEP_INTERVAL = 0.2
 | 
						|
 | 
						|
monitored_proc_names = [
 | 
						|
  'ubloxd', 'thermald', 'uploader', 'deleter', 'controlsd', 'plannerd', 'radard', 'mapd', 'loggerd' , 'logmessaged', 'tombstoned',
 | 
						|
  'logcatd', 'proclogd', 'boardd', 'pandad', './ui', 'ui',  'calibrationd', 'params_learner', 'modeld', 'monitoringd', 'camerad', 'sensord', 'updated', 'gpsd', 'athena']
 | 
						|
cpu_time_names = ['user', 'system', 'children_user', 'children_system']
 | 
						|
 | 
						|
timer = getattr(time, 'monotonic', time.time)
 | 
						|
 | 
						|
def get_arg_parser():
 | 
						|
  parser = argparse.ArgumentParser(
 | 
						|
    description="Unlogger and UI",
 | 
						|
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 | 
						|
 | 
						|
  parser.add_argument("proc_names", nargs="?", default='',
 | 
						|
                      help="Process names to be monitored, comma seperated")
 | 
						|
  parser.add_argument("--list_all", action='store_true',
 | 
						|
                      help="Show all running processes' cmdline")
 | 
						|
  parser.add_argument("--detailed_times", action='store_true',
 | 
						|
                      help="show cpu time details (split by user, system, child user, child system)")
 | 
						|
  return parser
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  args = get_arg_parser().parse_args(sys.argv[1:])
 | 
						|
  if args.list_all:
 | 
						|
    for p in psutil.process_iter():
 | 
						|
      print('cmdline', p.cmdline(), 'name', p.name())
 | 
						|
    sys.exit(0)
 | 
						|
 | 
						|
  if len(args.proc_names) > 0:
 | 
						|
    monitored_proc_names = args.proc_names.split(',')
 | 
						|
  monitored_procs = []
 | 
						|
  stats = {}
 | 
						|
  for p in psutil.process_iter():
 | 
						|
    if p == psutil.Process():
 | 
						|
      continue
 | 
						|
    matched = any([l for l in p.cmdline() if any([pn for pn in monitored_proc_names if re.match(r'.*{}.*'.format(pn), l, re.M | re.I)])])
 | 
						|
    if matched:
 | 
						|
      k = ' '.join(p.cmdline())
 | 
						|
      print('Add monitored proc:', k)
 | 
						|
      stats[k] = {'cpu_samples': defaultdict(list), 'min': defaultdict(lambda: None), 'max': defaultdict(lambda: None),
 | 
						|
                  'avg': defaultdict(lambda: 0.0), 'last_cpu_times': None, 'last_sys_time':None}
 | 
						|
      stats[k]['last_sys_time'] = timer()
 | 
						|
      stats[k]['last_cpu_times'] = p.cpu_times()
 | 
						|
      monitored_procs.append(p)
 | 
						|
  i = 0
 | 
						|
  interval_int = int(PRINT_INTERVAL / SLEEP_INTERVAL)
 | 
						|
  while True:
 | 
						|
    for p in monitored_procs:
 | 
						|
      k = ' '.join(p.cmdline())
 | 
						|
      cur_sys_time = timer()
 | 
						|
      cur_cpu_times = p.cpu_times()
 | 
						|
      cpu_times = np.subtract(cur_cpu_times, stats[k]['last_cpu_times']) / (cur_sys_time - stats[k]['last_sys_time'])
 | 
						|
      stats[k]['last_sys_time'] = cur_sys_time
 | 
						|
      stats[k]['last_cpu_times'] = cur_cpu_times
 | 
						|
      cpu_percent = 0
 | 
						|
      for num, name in enumerate(cpu_time_names):
 | 
						|
        stats[k]['cpu_samples'][name].append(cpu_times[num])
 | 
						|
        cpu_percent += cpu_times[num]
 | 
						|
      stats[k]['cpu_samples']['total'].append(cpu_percent)
 | 
						|
    time.sleep(SLEEP_INTERVAL)
 | 
						|
    i += 1
 | 
						|
    if i % interval_int == 0:
 | 
						|
      l = []
 | 
						|
      for k, stat in stats.items():
 | 
						|
        if len(stat['cpu_samples']) <= 0:
 | 
						|
          continue
 | 
						|
        for name, samples in stat['cpu_samples'].items():
 | 
						|
          samples = np.array(samples)
 | 
						|
          avg = samples.mean()
 | 
						|
          c = samples.size
 | 
						|
          min_cpu = np.amin(samples)
 | 
						|
          max_cpu = np.amax(samples)
 | 
						|
          if stat['min'][name] is None or min_cpu < stat['min'][name]:
 | 
						|
            stat['min'][name] = min_cpu
 | 
						|
          if stat['max'][name] is None or max_cpu > stat['max'][name]:
 | 
						|
            stat['max'][name] = max_cpu
 | 
						|
          stat['avg'][name] = (stat['avg'][name] * (i - c) + avg * c) / (i)
 | 
						|
          stat['cpu_samples'][name] = []
 | 
						|
 | 
						|
        msg = 'avg: {1:.2%}, min: {2:.2%}, max: {3:.2%} {0}'.format(os.path.basename(k), stat['avg']['total'], stat['min']['total'], stat['max']['total'])
 | 
						|
        if args.detailed_times:
 | 
						|
          for stat_type in ['avg', 'min', 'max']:
 | 
						|
            msg += '\n {}: {}'.format(stat_type, [name + ':' + str(round(stat[stat_type][name]*100, 2)) for name in cpu_time_names])
 | 
						|
        l.append((os.path.basename(k), stat['avg']['total'], msg))
 | 
						|
      l.sort(key= lambda x: -x[1])
 | 
						|
      for x in l:
 | 
						|
        print(x[2])
 | 
						|
      print('avg sum: {0:.2%} over {1} samples {2} seconds\n'.format(
 | 
						|
        sum([stat['avg']['total'] for k, stat in stats.items()]), i, i * SLEEP_INTERVAL
 | 
						|
      ))
 | 
						|
 |