dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

56 lines
2.1 KiB

import numpy as np
from selfdrive.test.longitudinal_maneuvers.plant import Plant
class Maneuver():
def __init__(self, title, duration, **kwargs):
# Was tempted to make a builder class
self.distance_lead = kwargs.get("initial_distance_lead", 200.0)
self.speed = kwargs.get("initial_speed", 0.0)
self.lead_relevancy = kwargs.get("lead_relevancy", 0)
self.breakpoints = kwargs.get("breakpoints", [0.0, duration])
self.speed_lead_values = kwargs.get("speed_lead_values", [0.0 for i in range(len(self.breakpoints))])
self.prob_lead_values = kwargs.get("prob_lead_values", [1.0 for i in range(len(self.breakpoints))])
self.cruise_values = kwargs.get("cruise_values", [50.0 for i in range(len(self.breakpoints))])
self.only_lead2 = kwargs.get("only_lead2", False)
self.only_radar = kwargs.get("only_radar", False)
self.duration = duration
self.title = title
def evaluate(self):
plant = Plant(
lead_relevancy=self.lead_relevancy,
speed=self.speed,
distance_lead=self.distance_lead,
only_lead2=self.only_lead2,
only_radar=self.only_radar
)
valid = True
logs = []
while plant.current_time() < self.duration:
speed_lead = np.interp(plant.current_time(), self.breakpoints, self.speed_lead_values)
prob = np.interp(plant.current_time(), self.breakpoints, self.prob_lead_values)
cruise = np.interp(plant.current_time(), self.breakpoints, self.cruise_values)
log = plant.step(speed_lead, prob, cruise)
d_rel = log['distance_lead'] - log['distance'] if self.lead_relevancy else 200.
v_rel = speed_lead - log['speed'] if self.lead_relevancy else 0.
log['d_rel'] = d_rel
log['v_rel'] = v_rel
logs.append(np.array([plant.current_time(),
log['distance'],
log['distance_lead'],
log['speed'],
speed_lead,
log['acceleration']]))
if d_rel < .4 and (self.only_radar or prob > 0.5):
print("Crashed!!!!")
valid = False
print("maneuver end", valid)
return valid, np.array(logs)