dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

232 lines
10 KiB

#!/usr/bin/env python3
import math
import numpy as np
from common.numpy_fast import interp
import cereal.messaging as messaging
from common.conversions import Conversions as CV
from common.filter_simple import FirstOrderFilter
from common.realtime import DT_MDL
from selfdrive.modeld.constants import T_IDXS
from selfdrive.controls.lib.longcontrol import LongCtrlState
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N
from system.swaglog import cloudlog
from selfdrive.controls.lib.vision_turn_controller import VisionTurnController
from selfdrive.controls.lib.speed_limit_controller import SpeedLimitController, SpeedLimitResolver
from selfdrive.controls.lib.turn_speed_controller import TurnSpeedController
from selfdrive.controls.lib.events import Events
LON_MPC_STEP = 0.2 # first step is 0.2s
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
A_CRUISE_MIN = -1.2
A_CRUISE_MAX_VALS = [1.2, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 15., 25., 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
#DP_FOLLOWING_DIST = {
# 0: 1.0,
# 1: 1.2,
# 2: 1.4,
# 3: 1.8,
#}
DP_ACCEL_ECO = 0
DP_ACCEL_NORMAL = 1
DP_ACCEL_SPORT = 2
# accel profile by @arne182 modified by cgw
_DP_CRUISE_MIN_V = [-0.05, -0.1, -0.3, -0.4, -0.4, -0.23, -0.1]
_DP_CRUISE_MIN_V_ECO = [-0.1, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]
_DP_CRUISE_MIN_V_SPORT = [-0.1, -0.2, -0.4, -0.5, -0.5, -0.25, -0.1]
_DP_CRUISE_MIN_BP = [0.0, 3.0, 5.0, 20.0, 33.3, 40.0, 55.0]
_DP_CRUISE_MAX_V = [3.5, 1.7, 1.31, 0.95, 0.77, 0.67, 0.55, 0.47, 0.31, 0.13]
_DP_CRUISE_MAX_V_ECO = [2.7, 1.4, 1.2, 0.7, 0.48, 0.35, 0.25, 0.15, 0.12, 0.06]
_DP_CRUISE_MAX_V_SPORT = [3.5, 3.5, 2.5, 1.5, 2.0, 2.0, 2.0, 1.5, 1.0, 0.5]
_DP_CRUISE_MAX_BP = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.]
def dp_calc_cruise_accel_limits(v_ego, dp_profile):
if dp_profile == DP_ACCEL_ECO:
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_ECO)
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_ECO)
elif dp_profile == DP_ACCEL_SPORT:
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_SPORT)
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_SPORT)
else:
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V)
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V)
return a_cruise_min, a_cruise_max
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class Planner:
def __init__(self, CP, init_v=0.0, init_a=0.0):
self.CP = CP
self.mpc = LongitudinalMpc()
self.fcw = False
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL)
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
self.solverExecutionTime = 0.0
# dp
self.dp_accel_profile_ctrl = False
self.dp_accel_profile = DP_ACCEL_ECO
self.cruise_source = 'cruise'
self.vision_turn_controller = VisionTurnController(CP)
self.speed_limit_controller = SpeedLimitController()
self.events = Events()
self.turn_speed_controller = TurnSpeedController()
def update(self, sm):
v_ego = sm['carState'].vEgo
# dp
self.dp_accel_profile_ctrl = sm['dragonConf'].dpAccelProfileCtrl
self.dp_accel_profile = sm['dragonConf'].dpAccelProfile
v_cruise_kph = sm['controlsState'].vCruise
v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
force_slow_decel = sm['controlsState'].forceDecel
# Reset current state when not engaged, or user is controlling the speed
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if reset_state:
self.v_desired_filter.x = v_ego
self.a_desired = 0.0
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
# Get acceleration and active solutions for custom long mpc.
self.cruise_source, a_min_sol, v_cruise_sol = self.cruise_solutions(not reset_state, self.v_desired_filter.x,
self.a_desired, v_cruise, sm)
if not self.dp_accel_profile_ctrl:
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
else:
accel_limits = dp_calc_cruise_accel_limits(v_ego, self.dp_accel_profile)
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
if force_slow_decel:
# if required so, force a smooth deceleration
accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05, a_min_sol)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
self.mpc.update(sm['carState'], sm['radarState'], v_cruise_sol, prev_accel_constraint)
self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution)
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 5
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source if self.mpc.source != 'cruise' else self.cruise_source
longitudinalPlan.fcw = self.fcw
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
longitudinalPlan.visionTurnControllerState = self.vision_turn_controller.state
longitudinalPlan.visionTurnSpeed = float(self.vision_turn_controller.v_turn)
longitudinalPlan.speedLimitControlState = self.speed_limit_controller.state
longitudinalPlan.speedLimit = float(self.speed_limit_controller.speed_limit)
longitudinalPlan.speedLimitOffset = float(self.speed_limit_controller.speed_limit_offset)
longitudinalPlan.distToSpeedLimit = float(self.speed_limit_controller.distance)
longitudinalPlan.isMapSpeedLimit = bool(self.speed_limit_controller.source == SpeedLimitResolver.Source.map_data)
longitudinalPlan.eventsDEPRECATED = self.events.to_msg()
longitudinalPlan.turnSpeedControlState = self.turn_speed_controller.state
longitudinalPlan.turnSpeed = float(self.turn_speed_controller.speed_limit)
longitudinalPlan.distToTurn = float(self.turn_speed_controller.distance)
longitudinalPlan.turnSign = int(self.turn_speed_controller.turn_sign)
pm.send('longitudinalPlan', plan_send)
def cruise_solutions(self, enabled, v_ego, a_ego, v_cruise, sm):
# Update controllers
self.vision_turn_controller.update(enabled, v_ego, a_ego, v_cruise, sm)
self.events = Events()
self.speed_limit_controller.update(enabled, v_ego, a_ego, sm, v_cruise, self.events)
self.turn_speed_controller.update(enabled, v_ego, a_ego, sm)
# Pick solution with lowest velocity target.
a_solutions = {'cruise': float("inf")}
v_solutions = {'cruise': v_cruise}
if self.vision_turn_controller.is_active:
a_solutions['turn'] = self.vision_turn_controller.a_target
v_solutions['turn'] = self.vision_turn_controller.v_turn
if self.speed_limit_controller.is_active:
a_solutions['limit'] = self.speed_limit_controller.a_target
v_solutions['limit'] = self.speed_limit_controller.speed_limit_offseted
if self.turn_speed_controller.is_active:
a_solutions['turnlimit'] = self.turn_speed_controller.a_target
v_solutions['turnlimit'] = self.turn_speed_controller.speed_limit
source = min(v_solutions, key=v_solutions.get)
return source, a_solutions[source], v_solutions[source]