dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

408 lines
17 KiB

import numpy as np
import time
from common.numpy_fast import interp
from enum import IntEnum
from cereal import log, car
from common.params import Params
from common.realtime import sec_since_boot
from selfdrive.controls.lib.drive_helpers import LIMIT_ADAPT_ACC, LIMIT_MIN_ACC, LIMIT_MAX_ACC, LIMIT_SPEED_OFFSET_TH, \
LIMIT_MAX_MAP_DATA_AGE, CONTROL_N
from selfdrive.controls.lib.events import Events
from selfdrive.modeld.constants import T_IDXS
_PARAMS_UPDATE_PERIOD = 2. # secs. Time between parameter updates.
_TEMP_INACTIVE_GUARD_PERIOD = 1. # secs. Time to wait after activation before considering temp deactivation signal.
# Lookup table for speed limit percent offset depending on speed.
_LIMIT_PERC_OFFSET_V = [ 0.0, 0.1, 0.14, 0.11, 0.2, 0.18, 0.17, 0.14, 0.065, 0.0] # 20, 33, 40, 50, 65, 75, 80, 80, 80 mph
_LIMIT_PERC_OFFSET_BP = [11.0, 13.4, 15.6, 20.1, 22.3, 24.58, 29.0, 31.2, 33.4, 35.7] # 20, 30, 35, 45, 55, 65, 70, 75, 80 mph
SpeedLimitControlState = log.LongitudinalPlan.SpeedLimitControlState
EventName = car.CarEvent.EventName
_DEBUG = False
def _debug(msg):
if not _DEBUG:
return
print(msg)
def _description_for_state(speed_limit_control_state):
if speed_limit_control_state == SpeedLimitControlState.inactive:
return 'INACTIVE'
if speed_limit_control_state == SpeedLimitControlState.tempInactive:
return 'TEMP_INACTIVE'
if speed_limit_control_state == SpeedLimitControlState.adapting:
return 'ADAPTING'
if speed_limit_control_state == SpeedLimitControlState.active:
return 'ACTIVE'
class SpeedLimitResolver():
class Source(IntEnum):
none = 0
car_state = 1
map_data = 2
nav = 3
class Policy(IntEnum):
car_state_only = 0
map_data_only = 1
car_state_priority = 2
map_data_priority = 3
combined = 4
nav_only = 5
nav_priority = 6
def __init__(self, policy=Policy.nav_priority):
self._limit_solutions = {} # Store for speed limit solutions from different sources
self._distance_solutions = {} # Store for distance to current speed limit start for different sources
self._v_ego = 0.
self._current_speed_limit = 0.
self._policy = policy
self._next_speed_limit_prev = 0.
self.speed_limit = 0.
self.distance = 0.
self.source = SpeedLimitResolver.Source.none
def resolve(self, v_ego, current_speed_limit, sm):
self._v_ego = v_ego
self._current_speed_limit = current_speed_limit
self._sm = sm
self._get_from_car_state()
self._get_from_nav()
self._get_from_map_data()
self._consolidate()
return self.speed_limit, self.distance, self.source
def _get_from_car_state(self):
self._limit_solutions[SpeedLimitResolver.Source.car_state] = self._sm['carState'].cruiseState.speedLimit
self._distance_solutions[SpeedLimitResolver.Source.car_state] = 0.
def _get_from_nav(self):
self._limit_solutions[SpeedLimitResolver.Source.nav] = self._sm['navInstruction'].speedLimit
self._distance_solutions[SpeedLimitResolver.Source.nav] = 0.
def _get_from_map_data(self):
# Ignore if no live map data
sock = 'liveMapData'
if self._sm.logMonoTime[sock] is None:
self._limit_solutions[SpeedLimitResolver.Source.map_data] = 0.
self._distance_solutions[SpeedLimitResolver.Source.map_data] = 0.
_debug('SL: No map data for speed limit')
return
#if not self._sm.updated[sock]:
# self._limit_solutions[SpeedLimitResolver.Source.map_data] = 0.
# self._distance_solutions[SpeedLimitResolver.Source.map_data] = 0.
# _debug('SL: not updated, mapd crashed?')
# return
# Load limits from map_data
map_data = self._sm[sock]
speed_limit = map_data.speedLimit if map_data.speedLimitValid else 0.
next_speed_limit = map_data.speedLimitAhead if map_data.speedLimitAheadValid else 0.
# Calculate the age of the gps fix. Ignore if too old.
gps_fix_age = time.time() - map_data.lastGpsTimestamp * 1e-3
if gps_fix_age > LIMIT_MAX_MAP_DATA_AGE:
self._limit_solutions[SpeedLimitResolver.Source.map_data] = 0.
self._distance_solutions[SpeedLimitResolver.Source.map_data] = 0.
_debug(f'SL: Ignoring map data as is too old. Age: {gps_fix_age}')
return
# When we have no ahead speed limit to consider or it is greater than current speed limit
# or car has stopped, then provide current value and reset tracking.
if next_speed_limit == 0. or self._v_ego <= 0. or next_speed_limit > self._current_speed_limit:
self._limit_solutions[SpeedLimitResolver.Source.map_data] = speed_limit
self._distance_solutions[SpeedLimitResolver.Source.map_data] = 0.
self._next_speed_limit_prev = 0.
return
# Calculate the actual distance to the speed limit ahead corrected by gps_fix_age
distance_since_fix = self._v_ego * gps_fix_age
distance_to_speed_limit_ahead = max(0., map_data.speedLimitAheadDistance - distance_since_fix)
# When we have a next_speed_limit value that has not changed from a provided next speed limit value
# in previous resolutions, we keep providing it.
if next_speed_limit == self._next_speed_limit_prev:
self._limit_solutions[SpeedLimitResolver.Source.map_data] = next_speed_limit
self._distance_solutions[SpeedLimitResolver.Source.map_data] = distance_to_speed_limit_ahead
return
# Reset tracking
self._next_speed_limit_prev = 0.
# Calculated the time needed to adapt to the new limit and the corresponding distance.
adapt_time = (next_speed_limit - self._v_ego) / LIMIT_ADAPT_ACC
adapt_distance = self._v_ego * adapt_time + 0.5 * LIMIT_ADAPT_ACC * adapt_time**2
# When we detect we are close enough, we provide the next limit value and track it.
if distance_to_speed_limit_ahead <= adapt_distance:
self._limit_solutions[SpeedLimitResolver.Source.map_data] = next_speed_limit
self._distance_solutions[SpeedLimitResolver.Source.map_data] = distance_to_speed_limit_ahead
self._next_speed_limit_prev = next_speed_limit
return
# Otherwise we just provide the map data speed limit.
self.distance_to_map_speed_limit = 0.
self._limit_solutions[SpeedLimitResolver.Source.map_data] = speed_limit
self._distance_solutions[SpeedLimitResolver.Source.map_data] = 0.
def _consolidate(self):
limits = np.array([], dtype=float)
distances = np.array([], dtype=float)
sources = np.array([], dtype=int)
if self._policy == SpeedLimitResolver.Policy.car_state_only or \
self._policy == SpeedLimitResolver.Policy.car_state_priority or \
self._policy == SpeedLimitResolver.Policy.combined:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.car_state])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.car_state])
sources = np.append(sources, SpeedLimitResolver.Source.car_state.value)
if self._policy == SpeedLimitResolver.Policy.nav_only or \
self._policy == SpeedLimitResolver.Policy.nav_priority or \
self._policy == SpeedLimitResolver.Policy.combined:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.nav])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.nav])
sources = np.append(sources, SpeedLimitResolver.Source.nav.value)
if self._policy == SpeedLimitResolver.Policy.map_data_only or \
self._policy == SpeedLimitResolver.Policy.map_data_priority or \
self._policy == SpeedLimitResolver.Policy.combined:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.map_data])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.map_data])
sources = np.append(sources, SpeedLimitResolver.Source.map_data.value)
if np.amax(limits) == 0.:
if self._policy == SpeedLimitResolver.Policy.car_state_priority:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.map_data])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.map_data])
sources = np.append(sources, SpeedLimitResolver.Source.map_data.value)
elif self._policy == SpeedLimitResolver.Policy.map_data_priority:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.car_state])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.car_state])
sources = np.append(sources, SpeedLimitResolver.Source.car_state.value)
elif self._policy == SpeedLimitResolver.Policy.nav_priority:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.map_data])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.map_data])
sources = np.append(sources, SpeedLimitResolver.Source.map_data.value)
if np.amax(limits) == 0.:
limits = np.append(limits, self._limit_solutions[SpeedLimitResolver.Source.car_state])
distances = np.append(distances, self._distance_solutions[SpeedLimitResolver.Source.car_state])
sources = np.append(sources, SpeedLimitResolver.Source.car_state.value)
# Get all non-zero values and set the minimum if any, otherwise 0.
mask = limits > 0.
limits = limits[mask]
distances = distances[mask]
sources = sources[mask]
if len(limits) > 0:
min_idx = np.argmin(limits)
self.speed_limit = limits[min_idx]
self.distance = distances[min_idx]
self.source = SpeedLimitResolver.Source(sources[min_idx])
else:
self.speed_limit = 0.
self.distance = 0.
self.source = SpeedLimitResolver.Source.none
_debug(f'SL: *** Speed Limit set: {self.speed_limit}, distance: {self.distance}, source: {self.source}')
class SpeedLimitController():
def __init__(self):
self._params = Params()
self._resolver = SpeedLimitResolver()
self._last_params_update = 0.0
self._last_op_enabled_time = 0.0
self._is_metric = self._params.get_bool("IsMetric")
self._is_enabled = self._params.get_bool("SpeedLimitControl")
self._offset_enabled = self._params.get_bool("SpeedLimitPercOffset")
self._op_enabled = False
self._op_enabled_prev = False
self._v_ego = 0.
self._a_ego = 0.
self._v_offset = 0.
self._v_cruise_setpoint = 0.
self._v_cruise_setpoint_prev = 0.
self._v_cruise_setpoint_changed = False
self._speed_limit = 0.
self._speed_limit_prev = 0.
self._speed_limit_changed = False
self._distance = 0.
self._source = SpeedLimitResolver.Source.none
self._state = SpeedLimitControlState.inactive
self._state_prev = SpeedLimitControlState.inactive
self._gas_pressed = False
self._a_target = 0.
@property
def a_target(self):
return self._a_target if self.is_active else self._a_ego
@property
def state(self):
return self._state
@state.setter
def state(self, value):
if value != self._state:
_debug(f'Speed Limit Controller state: {_description_for_state(value)}')
if value == SpeedLimitControlState.tempInactive:
# Reset previous speed limit to current value as to prevent going out of tempInactive in
# a single cycle when the speed limit changes at the same time the user has temporarily deactivate it.
self._speed_limit_prev = self._speed_limit
self._state = value
@property
def is_active(self):
return self.state > SpeedLimitControlState.tempInactive
@property
def speed_limit_offseted(self):
return self._speed_limit + self.speed_limit_offset
@property
def speed_limit_offset(self):
if self._offset_enabled:
return interp(self._speed_limit, _LIMIT_PERC_OFFSET_BP, _LIMIT_PERC_OFFSET_V) * self._speed_limit
return 0.
@property
def speed_limit(self):
return self._speed_limit
@property
def distance(self):
return self._distance
@property
def source(self):
return self._source
def _update_params(self):
time = sec_since_boot()
if time > self._last_params_update + _PARAMS_UPDATE_PERIOD:
self._is_enabled = self._params.get_bool("SpeedLimitControl")
self._offset_enabled = self._params.get_bool("SpeedLimitPercOffset")
_debug(f'Updated Speed limit params. enabled: {self._is_enabled}, with offset: {self._offset_enabled}')
self._last_params_update = time
def _update_calculations(self):
# Update current velocity offset (error)
self._v_offset = self.speed_limit_offseted - self._v_ego
# Track the time op becomes active to prevent going to tempInactive right away after
# op enabling since controlsd will change the cruise speed every time on enabling and this will
# cause a temp inactive transition if the controller is updated before controlsd sets actual cruise
# speed.
if not self._op_enabled_prev and self._op_enabled:
self._last_op_enabled_time = sec_since_boot()
# Update change tracking variables
self._speed_limit_changed = self._speed_limit != self._speed_limit_prev
self._v_cruise_setpoint_changed = self._v_cruise_setpoint != self._v_cruise_setpoint_prev
self._speed_limit_prev = self._speed_limit
self._v_cruise_setpoint_prev = self._v_cruise_setpoint
self._op_enabled_prev = self._op_enabled
def _state_transition(self):
self._state_prev = self._state
# In any case, if op is disabled, or speed limit control is disabled
# or the reported speed limit is 0 or gas is pressed, deactivate.
if not self._op_enabled or not self._is_enabled or self._speed_limit == 0 or self._gas_pressed:
self.state = SpeedLimitControlState.inactive
return
# In any case, we deactivate the speed limit controller temporarily if the user changes the cruise speed.
# Ignore if a minimum ammount of time has not passed since activation. This is to prevent temp inactivations
# due to controlsd logic changing cruise setpoint when going active.
if self._v_cruise_setpoint_changed and \
sec_since_boot() > (self._last_op_enabled_time + _TEMP_INACTIVE_GUARD_PERIOD):
self.state = SpeedLimitControlState.tempInactive
return
# inactive
if self.state == SpeedLimitControlState.inactive:
# If the limit speed offset is negative (i.e. reduce speed) and lower than threshold
# we go to adapting state to quickly reduce speed, otherwise we go directly to active
if self._v_offset < LIMIT_SPEED_OFFSET_TH:
self.state = SpeedLimitControlState.adapting
else:
self.state = SpeedLimitControlState.active
# tempInactive
elif self.state == SpeedLimitControlState.tempInactive:
# if speed limit changes, transition to inactive,
# proper active state will be set on next iteration.
if self._speed_limit_changed:
self.state = SpeedLimitControlState.inactive
# adapting
elif self.state == SpeedLimitControlState.adapting:
# Go to active once the speed offset is over threshold.
if self._v_offset >= LIMIT_SPEED_OFFSET_TH:
self.state = SpeedLimitControlState.active
# active
elif self.state == SpeedLimitControlState.active:
# Go to adapting if the speed offset goes below threshold.
if self._v_offset < LIMIT_SPEED_OFFSET_TH:
self.state = SpeedLimitControlState.adapting
def _update_solution(self):
# inactive or tempInactive state
if self.state <= SpeedLimitControlState.tempInactive:
# Preserve current values
a_target = self._a_ego
# adapting
elif self.state == SpeedLimitControlState.adapting:
# When adapting we target to achieve the speed limit on the distance if not there yet,
# otherwise try to keep the speed constant around the control time horizon.
if self.distance > 0:
a_target = (self.speed_limit_offseted**2 - self._v_ego**2) / (2. * self.distance)
else:
a_target = self._v_offset / T_IDXS[CONTROL_N]
# active
elif self.state == SpeedLimitControlState.active:
# When active we are trying to keep the speed constant around the control time horizon.
a_target = self._v_offset / T_IDXS[CONTROL_N]
# Keep solution limited.
self._a_target = np.clip(a_target, LIMIT_MIN_ACC, LIMIT_MAX_ACC)
def _update_events(self, events):
if not self.is_active:
# no event while inactive
return
if self._state_prev <= SpeedLimitControlState.tempInactive:
events.add(EventName.speedLimitActive)
elif self._speed_limit_changed != 0:
events.add(EventName.speedLimitValueChange)
def update(self, enabled, v_ego, a_ego, sm, v_cruise_setpoint, events=Events()):
self._op_enabled = enabled
self._v_ego = v_ego
self._a_ego = a_ego
self._v_cruise_setpoint = v_cruise_setpoint
self._gas_pressed = sm['carState'].gasPressed
self._speed_limit, self._distance, self._source = self._resolver.resolve(v_ego, self.speed_limit, sm)
self._update_params()
self._update_calculations()
self._state_transition()
self._update_solution()
self._update_events(events)