dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

884 lines
37 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef CAPNP_CAPABILITY_H_
#define CAPNP_CAPABILITY_H_
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif
#if CAPNP_LITE
#error "RPC APIs, including this header, are not available in lite mode."
#endif
#include <kj/async.h>
#include <kj/vector.h>
#include "raw-schema.h"
#include "any.h"
#include "pointer-helpers.h"
namespace capnp {
template <typename Results>
class Response;
template <typename T>
class RemotePromise: public kj::Promise<Response<T>>, public T::Pipeline {
// A Promise which supports pipelined calls. T is typically a struct type. T must declare
// an inner "mix-in" type "Pipeline" which implements pipelining; RemotePromise simply
// multiply-inherits that type along with Promise<Response<T>>. T::Pipeline must be movable,
// but does not need to be copyable (i.e. just like Promise<T>).
//
// The promise is for an owned pointer so that the RPC system can allocate the MessageReader
// itself.
public:
inline RemotePromise(kj::Promise<Response<T>>&& promise, typename T::Pipeline&& pipeline)
: kj::Promise<Response<T>>(kj::mv(promise)),
T::Pipeline(kj::mv(pipeline)) {}
inline RemotePromise(decltype(nullptr))
: kj::Promise<Response<T>>(nullptr),
T::Pipeline(nullptr) {}
KJ_DISALLOW_COPY(RemotePromise);
RemotePromise(RemotePromise&& other) = default;
RemotePromise& operator=(RemotePromise&& other) = default;
};
class LocalClient;
namespace _ { // private
extern const RawSchema NULL_INTERFACE_SCHEMA; // defined in schema.c++
class CapabilityServerSetBase;
} // namespace _ (private)
struct Capability {
// A capability without type-safe methods. Typed capability clients wrap `Client` and typed
// capability servers subclass `Server` to dispatch to the regular, typed methods.
class Client;
class Server;
struct _capnpPrivate {
struct IsInterface;
static constexpr uint64_t typeId = 0x3;
static constexpr Kind kind = Kind::INTERFACE;
static constexpr _::RawSchema const* schema = &_::NULL_INTERFACE_SCHEMA;
static const _::RawBrandedSchema* brand() {
return &_::NULL_INTERFACE_SCHEMA.defaultBrand;
}
};
};
// =======================================================================================
// Capability clients
class RequestHook;
class ResponseHook;
class PipelineHook;
class ClientHook;
template <typename Params, typename Results>
class Request: public Params::Builder {
// A call that hasn't been sent yet. This class extends a Builder for the call's "Params"
// structure with a method send() that actually sends it.
//
// Given a Cap'n Proto method `foo(a :A, b :B): C`, the generated client interface will have
// a method `Request<FooParams, C> fooRequest()` (as well as a convenience method
// `RemotePromise<C> foo(A::Reader a, B::Reader b)`).
public:
inline Request(typename Params::Builder builder, kj::Own<RequestHook>&& hook)
: Params::Builder(builder), hook(kj::mv(hook)) {}
inline Request(decltype(nullptr)): Params::Builder(nullptr) {}
RemotePromise<Results> send() KJ_WARN_UNUSED_RESULT;
// Send the call and return a promise for the results.
private:
kj::Own<RequestHook> hook;
friend class Capability::Client;
friend struct DynamicCapability;
template <typename, typename>
friend class CallContext;
friend class RequestHook;
};
template <typename Results>
class Response: public Results::Reader {
// A completed call. This class extends a Reader for the call's answer structure. The Response
// is move-only -- once it goes out-of-scope, the underlying message will be freed.
public:
inline Response(typename Results::Reader reader, kj::Own<ResponseHook>&& hook)
: Results::Reader(reader), hook(kj::mv(hook)) {}
private:
kj::Own<ResponseHook> hook;
template <typename, typename>
friend class Request;
friend class ResponseHook;
};
class Capability::Client {
// Base type for capability clients.
public:
typedef Capability Reads;
typedef Capability Calls;
Client(decltype(nullptr));
// If you need to declare a Client before you have anything to assign to it (perhaps because
// the assignment is going to occur in an if/else scope), you can start by initializing it to
// `nullptr`. The resulting client is not meant to be called and throws exceptions from all
// methods.
template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Capability::Server*>()>>
Client(kj::Own<T>&& server);
// Make a client capability that wraps the given server capability. The server's methods will
// only be executed in the given EventLoop, regardless of what thread calls the client's methods.
template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Client*>()>>
Client(kj::Promise<T>&& promise);
// Make a client from a promise for a future client. The resulting client queues calls until the
// promise resolves.
Client(kj::Exception&& exception);
// Make a broken client that throws the given exception from all calls.
Client(Client& other);
Client& operator=(Client& other);
// Copies by reference counting. Warning: This refcounting is not thread-safe. All copies of
// the client must remain in one thread.
Client(Client&&) = default;
Client& operator=(Client&&) = default;
// Move constructor avoids reference counting.
explicit Client(kj::Own<ClientHook>&& hook);
// For use by the RPC implementation: Wrap a ClientHook.
template <typename T>
typename T::Client castAs();
// Reinterpret the capability as implementing the given interface. Note that no error will occur
// here if the capability does not actually implement this interface, but later method calls will
// fail. It's up to the application to decide how indicate that additional interfaces are
// supported.
//
// TODO(perf): GCC 4.8 / Clang 3.3: rvalue-qualified version for better performance.
template <typename T>
typename T::Client castAs(InterfaceSchema schema);
// Dynamic version. `T` must be `DynamicCapability`, and you must `#include <capnp/dynamic.h>`.
kj::Promise<void> whenResolved();
// If the capability is actually only a promise, the returned promise resolves once the
// capability itself has resolved to its final destination (or propagates the exception if
// the capability promise is rejected). This is mainly useful for error-checking in the case
// where no calls are being made. There is no reason to wait for this before making calls; if
// the capability does not resolve, the call results will propagate the error.
Request<AnyPointer, AnyPointer> typelessRequest(
uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint);
// Make a request without knowing the types of the params or results. You specify the type ID
// and method number manually.
// TODO(someday): method(s) for Join
protected:
Client() = default;
template <typename Params, typename Results>
Request<Params, Results> newCall(uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint);
private:
kj::Own<ClientHook> hook;
static kj::Own<ClientHook> makeLocalClient(kj::Own<Capability::Server>&& server);
template <typename, Kind>
friend struct _::PointerHelpers;
friend struct DynamicCapability;
friend class Orphanage;
friend struct DynamicStruct;
friend struct DynamicList;
template <typename, Kind>
friend struct List;
friend class _::CapabilityServerSetBase;
friend class ClientHook;
};
// =======================================================================================
// Capability servers
class CallContextHook;
template <typename Params, typename Results>
class CallContext: public kj::DisallowConstCopy {
// Wrapper around CallContextHook with a specific return type.
//
// Methods of this class may only be called from within the server's event loop, not from other
// threads.
//
// The CallContext becomes invalid as soon as the call reports completion.
public:
explicit CallContext(CallContextHook& hook);
typename Params::Reader getParams();
// Get the params payload.
void releaseParams();
// Release the params payload. getParams() will throw an exception after this is called.
// Releasing the params may allow the RPC system to free up buffer space to handle other
// requests. Long-running asynchronous methods should try to call this as early as is
// convenient.
typename Results::Builder getResults(kj::Maybe<MessageSize> sizeHint = nullptr);
typename Results::Builder initResults(kj::Maybe<MessageSize> sizeHint = nullptr);
void setResults(typename Results::Reader value);
void adoptResults(Orphan<Results>&& value);
Orphanage getResultsOrphanage(kj::Maybe<MessageSize> sizeHint = nullptr);
// Manipulate the results payload. The "Return" message (part of the RPC protocol) will
// typically be allocated the first time one of these is called. Some RPC systems may
// allocate these messages in a limited space (such as a shared memory segment), therefore the
// application should delay calling these as long as is convenient to do so (but don't delay
// if doing so would require extra copies later).
//
// `sizeHint` indicates a guess at the message size. This will usually be used to decide how
// much space to allocate for the first message segment (don't worry: only space that is actually
// used will be sent on the wire). If omitted, the system decides. The message root pointer
// should not be included in the size. So, if you are simply going to copy some existing message
// directly into the results, just call `.totalSize()` and pass that in.
template <typename SubParams>
kj::Promise<void> tailCall(Request<SubParams, Results>&& tailRequest);
// Resolve the call by making a tail call. `tailRequest` is a request that has been filled in
// but not yet sent. The context will send the call, then fill in the results with the result
// of the call. If tailCall() is used, {get,init,set,adopt}Results (above) *must not* be called.
//
// The RPC implementation may be able to optimize a tail call to another machine such that the
// results never actually pass through this machine. Even if no such optimization is possible,
// `tailCall()` may allow pipelined calls to be forwarded optimistically to the new call site.
//
// In general, this should be the last thing a method implementation calls, and the promise
// returned from `tailCall()` should then be returned by the method implementation.
void allowCancellation();
// Indicate that it is OK for the RPC system to discard its Promise for this call's result if
// the caller cancels the call, thereby transitively canceling any asynchronous operations the
// call implementation was performing. This is not done by default because it could represent a
// security risk: applications must be carefully written to ensure that they do not end up in
// a bad state if an operation is canceled at an arbitrary point. However, for long-running
// method calls that hold significant resources, prompt cancellation is often useful.
//
// Keep in mind that asynchronous cancellation cannot occur while the method is synchronously
// executing on a local thread. The method must perform an asynchronous operation or call
// `EventLoop::current().evalLater()` to yield control.
//
// Note: You might think that we should offer `onCancel()` and/or `isCanceled()` methods that
// provide notification when the caller cancels the request without forcefully killing off the
// promise chain. Unfortunately, this composes poorly with promise forking: the canceled
// path may be just one branch of a fork of the result promise. The other branches still want
// the call to continue. Promise forking is used within the Cap'n Proto implementation -- in
// particular each pipelined call forks the result promise. So, if a caller made a pipelined
// call and then dropped the original object, the call should not be canceled, but it would be
// excessively complicated for the framework to avoid notififying of cancellation as long as
// pipelined calls still exist.
private:
CallContextHook* hook;
friend class Capability::Server;
friend struct DynamicCapability;
};
class Capability::Server {
// Objects implementing a Cap'n Proto interface must subclass this. Typically, such objects
// will instead subclass a typed Server interface which will take care of implementing
// dispatchCall().
public:
typedef Capability Serves;
virtual kj::Promise<void> dispatchCall(uint64_t interfaceId, uint16_t methodId,
CallContext<AnyPointer, AnyPointer> context) = 0;
// Call the given method. `params` is the input struct, and should be released as soon as it
// is no longer needed. `context` may be used to allocate the output struct and deal with
// cancellation.
// TODO(someday): Method which can optionally be overridden to implement Join when the object is
// a proxy.
protected:
inline Capability::Client thisCap();
// Get a capability pointing to this object, much like the `this` keyword.
//
// The effect of this method is undefined if:
// - No capability client has been created pointing to this object. (This is always the case in
// the server's constructor.)
// - The capability client pointing at this object has been destroyed. (This is always the case
// in the server's destructor.)
// - Multiple capability clients have been created around the same server (possible if the server
// is refcounted, which is not recommended since the client itself provides refcounting).
template <typename Params, typename Results>
CallContext<Params, Results> internalGetTypedContext(
CallContext<AnyPointer, AnyPointer> typeless);
kj::Promise<void> internalUnimplemented(const char* actualInterfaceName,
uint64_t requestedTypeId);
kj::Promise<void> internalUnimplemented(const char* interfaceName,
uint64_t typeId, uint16_t methodId);
kj::Promise<void> internalUnimplemented(const char* interfaceName, const char* methodName,
uint64_t typeId, uint16_t methodId);
private:
ClientHook* thisHook = nullptr;
friend class LocalClient;
};
// =======================================================================================
class ReaderCapabilityTable: private _::CapTableReader {
// Class which imbues Readers with the ability to read capabilities.
//
// In Cap'n Proto format, the encoding of a capability pointer is simply an integer index into
// an external table. Since these pointers fundamentally point outside the message, a
// MessageReader by default has no idea what they point at, and therefore reading capabilities
// from such a reader will throw exceptions.
//
// In order to be able to read capabilities, you must first attach a capability table, using
// this class. By "imbuing" a Reader, you get a new Reader which will interpret capability
// pointers by treating them as indexes into the ReaderCapabilityTable.
//
// Note that when using Cap'n Proto's RPC system, this is handled automatically.
public:
explicit ReaderCapabilityTable(kj::Array<kj::Maybe<kj::Own<ClientHook>>> table);
KJ_DISALLOW_COPY(ReaderCapabilityTable);
template <typename T>
T imbue(T reader);
// Return a reader equivalent to `reader` except that when reading capability-valued fields,
// the capabilities are looked up in this table.
private:
kj::Array<kj::Maybe<kj::Own<ClientHook>>> table;
kj::Maybe<kj::Own<ClientHook>> extractCap(uint index) override;
};
class BuilderCapabilityTable: private _::CapTableBuilder {
// Class which imbues Builders with the ability to read and write capabilities.
//
// This is much like ReaderCapabilityTable, except for builders. The table starts out empty,
// but capabilities can be added to it over time.
public:
BuilderCapabilityTable();
KJ_DISALLOW_COPY(BuilderCapabilityTable);
inline kj::ArrayPtr<kj::Maybe<kj::Own<ClientHook>>> getTable() { return table; }
template <typename T>
T imbue(T builder);
// Return a builder equivalent to `builder` except that when reading capability-valued fields,
// the capabilities are looked up in this table.
private:
kj::Vector<kj::Maybe<kj::Own<ClientHook>>> table;
kj::Maybe<kj::Own<ClientHook>> extractCap(uint index) override;
uint injectCap(kj::Own<ClientHook>&& cap) override;
void dropCap(uint index) override;
};
// =======================================================================================
namespace _ { // private
class CapabilityServerSetBase {
public:
Capability::Client addInternal(kj::Own<Capability::Server>&& server, void* ptr);
kj::Promise<void*> getLocalServerInternal(Capability::Client& client);
};
} // namespace _ (private)
template <typename T>
class CapabilityServerSet: private _::CapabilityServerSetBase {
// Allows a server to recognize its own capabilities when passed back to it, and obtain the
// underlying Server objects associated with them.
//
// All objects in the set must have the same interface type T. The objects may implement various
// interfaces derived from T (and in fact T can be `capnp::Capability` to accept all objects),
// but note that if you compile with RTTI disabled then you will not be able to down-cast through
// virtual inheritance, and all inheritance between server interfaces is virtual. So, with RTTI
// disabled, you will likely need to set T to be the most-derived Cap'n Proto interface type,
// and you server class will need to be directly derived from that, so that you can use
// static_cast (or kj::downcast) to cast to it after calling getLocalServer(). (If you compile
// with RTTI, then you can freely dynamic_cast and ignore this issue!)
public:
CapabilityServerSet() = default;
KJ_DISALLOW_COPY(CapabilityServerSet);
typename T::Client add(kj::Own<typename T::Server>&& server);
// Create a new capability Client for the given Server and also add this server to the set.
kj::Promise<kj::Maybe<typename T::Server&>> getLocalServer(typename T::Client& client);
// Given a Client pointing to a server previously passed to add(), return the corresponding
// Server. This returns a promise because if the input client is itself a promise, this must
// wait for it to resolve. Keep in mind that the server will be deleted when all clients are
// gone, so the caller should make sure to keep the client alive (hence why this method only
// accepts an lvalue input).
};
// =======================================================================================
// Hook interfaces which must be implemented by the RPC system. Applications never call these
// directly; the RPC system implements them and the types defined earlier in this file wrap them.
class RequestHook {
// Hook interface implemented by RPC system representing a request being built.
public:
virtual RemotePromise<AnyPointer> send() = 0;
// Send the call and return a promise for the result.
virtual const void* getBrand() = 0;
// Returns a void* that identifies who made this request. This can be used by an RPC adapter to
// discover when tail call is going to be sent over its own connection and therefore can be
// optimized into a remote tail call.
template <typename T, typename U>
inline static kj::Own<RequestHook> from(Request<T, U>&& request) {
return kj::mv(request.hook);
}
};
class ResponseHook {
// Hook interface implemented by RPC system representing a response.
//
// At present this class has no methods. It exists only for garbage collection -- when the
// ResponseHook is destroyed, the results can be freed.
public:
virtual ~ResponseHook() noexcept(false);
// Just here to make sure the type is dynamic.
template <typename T>
inline static kj::Own<ResponseHook> from(Response<T>&& response) {
return kj::mv(response.hook);
}
};
// class PipelineHook is declared in any.h because it is needed there.
class ClientHook {
public:
ClientHook();
virtual Request<AnyPointer, AnyPointer> newCall(
uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) = 0;
// Start a new call, allowing the client to allocate request/response objects as it sees fit.
// This version is used when calls are made from application code in the local process.
struct VoidPromiseAndPipeline {
kj::Promise<void> promise;
kj::Own<PipelineHook> pipeline;
};
virtual VoidPromiseAndPipeline call(uint64_t interfaceId, uint16_t methodId,
kj::Own<CallContextHook>&& context) = 0;
// Call the object, but the caller controls allocation of the request/response objects. If the
// callee insists on allocating these objects itself, it must make a copy. This version is used
// when calls come in over the network via an RPC system. Note that even if the returned
// `Promise<void>` is discarded, the call may continue executing if any pipelined calls are
// waiting for it.
//
// Since the caller of this method chooses the CallContext implementation, it is the caller's
// responsibility to ensure that the returned promise is not canceled unless allowed via
// the context's `allowCancellation()`.
//
// The call must not begin synchronously; the callee must arrange for the call to begin in a
// later turn of the event loop. Otherwise, application code may call back and affect the
// callee's state in an unexpected way.
virtual kj::Maybe<ClientHook&> getResolved() = 0;
// If this ClientHook is a promise that has already resolved, returns the inner, resolved version
// of the capability. The caller may permanently replace this client with the resolved one if
// desired. Returns null if the client isn't a promise or hasn't resolved yet -- use
// `whenMoreResolved()` to distinguish between them.
virtual kj::Maybe<kj::Promise<kj::Own<ClientHook>>> whenMoreResolved() = 0;
// If this client is a settled reference (not a promise), return nullptr. Otherwise, return a
// promise that eventually resolves to a new client that is closer to being the final, settled
// client (i.e. the value eventually returned by `getResolved()`). Calling this repeatedly
// should eventually produce a settled client.
kj::Promise<void> whenResolved();
// Repeatedly calls whenMoreResolved() until it returns nullptr.
virtual kj::Own<ClientHook> addRef() = 0;
// Return a new reference to the same capability.
virtual const void* getBrand() = 0;
// Returns a void* that identifies who made this client. This can be used by an RPC adapter to
// discover when a capability it needs to marshal is one that it created in the first place, and
// therefore it can transfer the capability without proxying.
static const uint NULL_CAPABILITY_BRAND;
// Value is irrelevant; used for pointer.
inline bool isNull() { return getBrand() == &NULL_CAPABILITY_BRAND; }
// Returns true if the capability was created as a result of assigning a Client to null or by
// reading a null pointer out of a Cap'n Proto message.
virtual void* getLocalServer(_::CapabilityServerSetBase& capServerSet);
// If this is a local capability created through `capServerSet`, return the underlying Server.
// Otherwise, return nullptr. Default implementation (which everyone except LocalClient should
// use) always returns nullptr.
static kj::Own<ClientHook> from(Capability::Client client) { return kj::mv(client.hook); }
};
class CallContextHook {
// Hook interface implemented by RPC system to manage a call on the server side. See
// CallContext<T>.
public:
virtual AnyPointer::Reader getParams() = 0;
virtual void releaseParams() = 0;
virtual AnyPointer::Builder getResults(kj::Maybe<MessageSize> sizeHint) = 0;
virtual kj::Promise<void> tailCall(kj::Own<RequestHook>&& request) = 0;
virtual void allowCancellation() = 0;
virtual kj::Promise<AnyPointer::Pipeline> onTailCall() = 0;
// If `tailCall()` is called, resolves to the PipelineHook from the tail call. An
// implementation of `ClientHook::call()` is allowed to call this at most once.
virtual ClientHook::VoidPromiseAndPipeline directTailCall(kj::Own<RequestHook>&& request) = 0;
// Call this when you would otherwise call onTailCall() immediately followed by tailCall().
// Implementations of tailCall() should typically call directTailCall() and then fulfill the
// promise fulfiller for onTailCall() with the returned pipeline.
virtual kj::Own<CallContextHook> addRef() = 0;
};
kj::Own<ClientHook> newLocalPromiseClient(kj::Promise<kj::Own<ClientHook>>&& promise);
// Returns a ClientHook that queues up calls until `promise` resolves, then forwards them to
// the new client. This hook's `getResolved()` and `whenMoreResolved()` methods will reflect the
// redirection to the eventual replacement client.
kj::Own<PipelineHook> newLocalPromisePipeline(kj::Promise<kj::Own<PipelineHook>>&& promise);
// Returns a PipelineHook that queues up calls until `promise` resolves, then forwards them to
// the new pipeline.
kj::Own<ClientHook> newBrokenCap(kj::StringPtr reason);
kj::Own<ClientHook> newBrokenCap(kj::Exception&& reason);
// Helper function that creates a capability which simply throws exceptions when called.
kj::Own<PipelineHook> newBrokenPipeline(kj::Exception&& reason);
// Helper function that creates a pipeline which simply throws exceptions when called.
Request<AnyPointer, AnyPointer> newBrokenRequest(
kj::Exception&& reason, kj::Maybe<MessageSize> sizeHint);
// Helper function that creates a Request object that simply throws exceptions when sent.
// =======================================================================================
// Extend PointerHelpers for interfaces
namespace _ { // private
template <typename T>
struct PointerHelpers<T, Kind::INTERFACE> {
static inline typename T::Client get(PointerReader reader) {
return typename T::Client(reader.getCapability());
}
static inline typename T::Client get(PointerBuilder builder) {
return typename T::Client(builder.getCapability());
}
static inline void set(PointerBuilder builder, typename T::Client&& value) {
builder.setCapability(kj::mv(value.Capability::Client::hook));
}
static inline void set(PointerBuilder builder, typename T::Client& value) {
builder.setCapability(value.Capability::Client::hook->addRef());
}
static inline void adopt(PointerBuilder builder, Orphan<T>&& value) {
builder.adopt(kj::mv(value.builder));
}
static inline Orphan<T> disown(PointerBuilder builder) {
return Orphan<T>(builder.disown());
}
};
} // namespace _ (private)
// =======================================================================================
// Extend List for interfaces
template <typename T>
struct List<T, Kind::INTERFACE> {
List() = delete;
class Reader {
public:
typedef List<T> Reads;
Reader() = default;
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return unbound(reader.size() / ELEMENTS); }
inline typename T::Client operator[](uint index) const {
KJ_IREQUIRE(index < size());
return typename T::Client(reader.getPointerElement(
bounded(index) * ELEMENTS).getCapability());
}
typedef _::IndexingIterator<const Reader, typename T::Client> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<T> Builds;
Builder() = delete;
inline Builder(decltype(nullptr)) {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() const { return Reader(builder.asReader()); }
inline Reader asReader() const { return Reader(builder.asReader()); }
inline uint size() const { return unbound(builder.size() / ELEMENTS); }
inline typename T::Client operator[](uint index) {
KJ_IREQUIRE(index < size());
return typename T::Client(builder.getPointerElement(
bounded(index) * ELEMENTS).getCapability());
}
inline void set(uint index, typename T::Client value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).setCapability(kj::mv(value.hook));
}
inline void adopt(uint index, Orphan<T>&& value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).adopt(kj::mv(value));
}
inline Orphan<T> disown(uint index) {
KJ_IREQUIRE(index < size());
return Orphan<T>(builder.getPointerElement(bounded(index) * ELEMENTS).disown());
}
typedef _::IndexingIterator<Builder, typename T::Client> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initList(ElementSize::POINTER, bounded(size) * ELEMENTS);
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getList(ElementSize::POINTER, defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(ElementSize::POINTER, defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
// =======================================================================================
// Inline implementation details
template <typename Params, typename Results>
RemotePromise<Results> Request<Params, Results>::send() {
auto typelessPromise = hook->send();
hook = nullptr; // prevent reuse
// Convert the Promise to return the correct response type.
// Explicitly upcast to kj::Promise to make clear that calling .then() doesn't invalidate the
// Pipeline part of the RemotePromise.
auto typedPromise = kj::implicitCast<kj::Promise<Response<AnyPointer>>&>(typelessPromise)
.then([](Response<AnyPointer>&& response) -> Response<Results> {
return Response<Results>(response.getAs<Results>(), kj::mv(response.hook));
});
// Wrap the typeless pipeline in a typed wrapper.
typename Results::Pipeline typedPipeline(
kj::mv(kj::implicitCast<AnyPointer::Pipeline&>(typelessPromise)));
return RemotePromise<Results>(kj::mv(typedPromise), kj::mv(typedPipeline));
}
inline Capability::Client::Client(kj::Own<ClientHook>&& hook): hook(kj::mv(hook)) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Own<T>&& server)
: hook(makeLocalClient(kj::mv(server))) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Promise<T>&& promise)
: hook(newLocalPromiseClient(promise.then([](T&& t) { return kj::mv(t.hook); }))) {}
inline Capability::Client::Client(Client& other): hook(other.hook->addRef()) {}
inline Capability::Client& Capability::Client::operator=(Client& other) {
hook = other.hook->addRef();
return *this;
}
template <typename T>
inline typename T::Client Capability::Client::castAs() {
return typename T::Client(hook->addRef());
}
inline kj::Promise<void> Capability::Client::whenResolved() {
return hook->whenResolved();
}
inline Request<AnyPointer, AnyPointer> Capability::Client::typelessRequest(
uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint) {
return newCall<AnyPointer, AnyPointer>(interfaceId, methodId, sizeHint);
}
template <typename Params, typename Results>
inline Request<Params, Results> Capability::Client::newCall(
uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) {
auto typeless = hook->newCall(interfaceId, methodId, sizeHint);
return Request<Params, Results>(typeless.template getAs<Params>(), kj::mv(typeless.hook));
}
template <typename Params, typename Results>
inline CallContext<Params, Results>::CallContext(CallContextHook& hook): hook(&hook) {}
template <typename Params, typename Results>
inline typename Params::Reader CallContext<Params, Results>::getParams() {
return hook->getParams().template getAs<Params>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::releaseParams() {
hook->releaseParams();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::getResults(
kj::Maybe<MessageSize> sizeHint) {
// `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
return hook->getResults(sizeHint).template getAs<Results>();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::initResults(
kj::Maybe<MessageSize> sizeHint) {
// `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
return hook->getResults(sizeHint).template initAs<Results>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::setResults(typename Results::Reader value) {
hook->getResults(value.totalSize()).template setAs<Results>(value);
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::adoptResults(Orphan<Results>&& value) {
hook->getResults(nullptr).adopt(kj::mv(value));
}
template <typename Params, typename Results>
inline Orphanage CallContext<Params, Results>::getResultsOrphanage(
kj::Maybe<MessageSize> sizeHint) {
return Orphanage::getForMessageContaining(hook->getResults(sizeHint));
}
template <typename Params, typename Results>
template <typename SubParams>
inline kj::Promise<void> CallContext<Params, Results>::tailCall(
Request<SubParams, Results>&& tailRequest) {
return hook->tailCall(kj::mv(tailRequest.hook));
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::allowCancellation() {
hook->allowCancellation();
}
template <typename Params, typename Results>
CallContext<Params, Results> Capability::Server::internalGetTypedContext(
CallContext<AnyPointer, AnyPointer> typeless) {
return CallContext<Params, Results>(*typeless.hook);
}
Capability::Client Capability::Server::thisCap() {
return Client(thisHook->addRef());
}
template <typename T>
T ReaderCapabilityTable::imbue(T reader) {
return T(_::PointerHelpers<FromReader<T>>::getInternalReader(reader).imbue(this));
}
template <typename T>
T BuilderCapabilityTable::imbue(T builder) {
return T(_::PointerHelpers<FromBuilder<T>>::getInternalBuilder(kj::mv(builder)).imbue(this));
}
template <typename T>
typename T::Client CapabilityServerSet<T>::add(kj::Own<typename T::Server>&& server) {
void* ptr = reinterpret_cast<void*>(server.get());
// Clang insists that `castAs` is a template-dependent member and therefore we need the
// `template` keyword here, but AFAICT this is wrong: addImpl() is not a template.
return addInternal(kj::mv(server), ptr).template castAs<T>();
}
template <typename T>
kj::Promise<kj::Maybe<typename T::Server&>> CapabilityServerSet<T>::getLocalServer(
typename T::Client& client) {
return getLocalServerInternal(client)
.then([](void* server) -> kj::Maybe<typename T::Server&> {
if (server == nullptr) {
return nullptr;
} else {
return *reinterpret_cast<typename T::Server*>(server);
}
});
}
template <typename T>
struct Orphanage::GetInnerReader<T, Kind::INTERFACE> {
static inline kj::Own<ClientHook> apply(typename T::Client t) {
return ClientHook::from(kj::mv(t));
}
};
} // namespace capnp
#endif // CAPNP_CAPABILITY_H_