dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

277 lines
9.0 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef KJ_FUNCTION_H_
#define KJ_FUNCTION_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "memory.h"
namespace kj {
template <typename Signature>
class Function;
// Function wrapper using virtual-based polymorphism. Use this when template polymorphism is
// not possible. You can, for example, accept a Function as a parameter:
//
// void setFilter(Function<bool(const Widget&)> filter);
//
// The caller of `setFilter()` may then pass any callable object as the parameter. The callable
// object does not have to have the exact signature specified, just one that is "compatible" --
// i.e. the return type is covariant and the parameters are contravariant.
//
// Unlike `std::function`, `kj::Function`s are movable but not copyable, just like `kj::Own`. This
// is to avoid unexpected heap allocation or slow atomic reference counting.
//
// When a `Function` is constructed from an lvalue, it captures only a reference to the value.
// When constructed from an rvalue, it invokes the value's move constructor. So, for example:
//
// struct AddN {
// int n;
// int operator(int i) { return i + n; }
// }
//
// Function<int(int, int)> f1 = AddN{2};
// // f1 owns an instance of AddN. It may safely be moved out
// // of the local scope.
//
// AddN adder(2);
// Function<int(int, int)> f2 = adder;
// // f2 contains a reference to `adder`. Thus, it becomes invalid
// // when `adder` goes out-of-scope.
//
// AddN adder2(2);
// Function<int(int, int)> f3 = kj::mv(adder2);
// // f3 owns an insatnce of AddN moved from `adder2`. f3 may safely
// // be moved out of the local scope.
//
// Additionally, a Function may be bound to a class method using KJ_BIND_METHOD(object, methodName).
// For example:
//
// class Printer {
// public:
// void print(int i);
// void print(kj::StringPtr s);
// };
//
// Printer p;
//
// Function<void(uint)> intPrinter = KJ_BIND_METHOD(p, print);
// // Will call Printer::print(int).
//
// Function<void(const char*)> strPrinter = KJ_BIND_METHOD(p, print);
// // Will call Printer::print(kj::StringPtr).
//
// Notice how KJ_BIND_METHOD is able to figure out which overload to use depending on the kind of
// Function it is binding to.
template <typename Signature>
class ConstFunction;
// Like Function, but wraps a "const" (i.e. thread-safe) call.
template <typename Return, typename... Params>
class Function<Return(Params...)> {
public:
template <typename F>
inline Function(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
Function() = default;
// Make sure people don't accidentally end up wrapping a reference when they meant to return
// a function.
KJ_DISALLOW_COPY(Function);
Function(Function&) = delete;
Function& operator=(Function&) = delete;
template <typename T> Function(const Function<T>&) = delete;
template <typename T> Function& operator=(const Function<T>&) = delete;
template <typename T> Function(const ConstFunction<T>&) = delete;
template <typename T> Function& operator=(const ConstFunction<T>&) = delete;
Function(Function&&) = default;
Function& operator=(Function&&) = default;
inline Return operator()(Params... params) {
return (*impl)(kj::fwd<Params>(params)...);
}
Function reference() {
// Forms a new Function of the same type that delegates to this Function by reference.
// Therefore, this Function must outlive the returned Function, but otherwise they behave
// exactly the same.
return *impl;
}
private:
class Iface {
public:
virtual Return operator()(Params... params) = 0;
};
template <typename F>
class Impl final: public Iface {
public:
explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
Return operator()(Params... params) override {
return f(kj::fwd<Params>(params)...);
}
private:
F f;
};
Own<Iface> impl;
};
template <typename Return, typename... Params>
class ConstFunction<Return(Params...)> {
public:
template <typename F>
inline ConstFunction(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
ConstFunction() = default;
// Make sure people don't accidentally end up wrapping a reference when they meant to return
// a function.
KJ_DISALLOW_COPY(ConstFunction);
ConstFunction(ConstFunction&) = delete;
ConstFunction& operator=(ConstFunction&) = delete;
template <typename T> ConstFunction(const ConstFunction<T>&) = delete;
template <typename T> ConstFunction& operator=(const ConstFunction<T>&) = delete;
template <typename T> ConstFunction(const Function<T>&) = delete;
template <typename T> ConstFunction& operator=(const Function<T>&) = delete;
ConstFunction(ConstFunction&&) = default;
ConstFunction& operator=(ConstFunction&&) = default;
inline Return operator()(Params... params) const {
return (*impl)(kj::fwd<Params>(params)...);
}
ConstFunction reference() const {
// Forms a new ConstFunction of the same type that delegates to this ConstFunction by reference.
// Therefore, this ConstFunction must outlive the returned ConstFunction, but otherwise they
// behave exactly the same.
return *impl;
}
private:
class Iface {
public:
virtual Return operator()(Params... params) const = 0;
};
template <typename F>
class Impl final: public Iface {
public:
explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
Return operator()(Params... params) const override {
return f(kj::fwd<Params>(params)...);
}
private:
F f;
};
Own<Iface> impl;
};
#if 1
namespace _ { // private
template <typename T, typename Signature, Signature method>
class BoundMethod;
template <typename T, typename Return, typename... Params, Return (Decay<T>::*method)(Params...)>
class BoundMethod<T, Return (Decay<T>::*)(Params...), method> {
public:
BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
Return operator()(Params&&... params) {
return (t.*method)(kj::fwd<Params>(params)...);
}
private:
T t;
};
template <typename T, typename Return, typename... Params,
Return (Decay<T>::*method)(Params...) const>
class BoundMethod<T, Return (Decay<T>::*)(Params...) const, method> {
public:
BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
Return operator()(Params&&... params) const {
return (t.*method)(kj::fwd<Params>(params)...);
}
private:
T t;
};
} // namespace _ (private)
#define KJ_BIND_METHOD(obj, method) \
::kj::_::BoundMethod<KJ_DECLTYPE_REF(obj), \
decltype(&::kj::Decay<decltype(obj)>::method), \
&::kj::Decay<decltype(obj)>::method>(obj)
// Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
// lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
// contain a copy (by move) of it.
//
// The current implementation requires that the method is not overloaded.
//
// TODO(someday): C++14's generic lambdas may be able to simplify this code considerably, and
// probably make it work with overloaded methods.
#else
// Here's a better implementation of the above that doesn't work with GCC (but does with Clang)
// because it uses a local class with a template method. Sigh. This implementation supports
// overloaded methods.
#define KJ_BIND_METHOD(obj, method) \
({ \
typedef KJ_DECLTYPE_REF(obj) T; \
class F { \
public: \
inline F(T&& t): t(::kj::fwd<T>(t)) {} \
template <typename... Params> \
auto operator()(Params&&... params) \
-> decltype(::kj::instance<T>().method(::kj::fwd<Params>(params)...)) { \
return t.method(::kj::fwd<Params>(params)...); \
} \
private: \
T t; \
}; \
(F(obj)); \
})
// Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
// lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
// contain a copy (by move) of it.
#endif
} // namespace kj
#endif // KJ_FUNCTION_H_