dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

519 lines
20 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/function/function_evaluation_tree.hpp
* \authors Boris Houska, Hans Joachim Ferreau, Milan Vukov
* \date 2008 - 2013
*/
#ifndef ACADO_TOOLKIT_FUNCTION_EVALUATION_TREE_HPP
#define ACADO_TOOLKIT_FUNCTION_EVALUATION_TREE_HPP
#include <acado/symbolic_expression/expression.hpp>
#include <acado/symbolic_operator/evaluation_template.hpp>
#include <acado/symbolic_operator/symbolic_index_list.hpp>
BEGIN_NAMESPACE_ACADO
/**
* \brief Organizes the evaluation of the function tree.
*
* \ingroup BasicDataStructures
*
* The class FunctionEvaluationTree is designed to organize the evaluation of
* tree structured expressions.
*
* \author Boris Houska, Hans Joachim Ferreau, Milan Vukov
*/
class FunctionEvaluationTree
{
//
// PUBLIC MEMBER FUNCTIONS:
//
public:
/** Default constructor. */
FunctionEvaluationTree( );
/** Copy constructor (deep copy). */
FunctionEvaluationTree( const FunctionEvaluationTree& arg );
/** Destructor. */
virtual ~FunctionEvaluationTree( );
/** Assignment operator (deep copy). */
FunctionEvaluationTree& operator=( const FunctionEvaluationTree& arg );
/** Loading Expressions (deep copy). */
virtual returnValue operator<<( const Expression& arg );
/** Returns the dimension of the symbolic expression \n
* \return The requested dimension.
*/
virtual int getDim () const;
/** Returns the number of intermediate expressions that have \n
* been detected in the symbolic expression. \n
* \return The requested number of intermediate states. \n
*/
virtual int getN () const;
/** Returns the number of differential states \n
* \return The requested number of differential states. \n
*/
virtual int getNX () const;
/** Returns the number of algebraic states \n
* \return The requested number of algebraic states. \n
*/
virtual int getNXA () const;
/** Returns the number of differential states derivatives \n
* \return The requested number of differential state \n
* derivatives. \n
*/
virtual int getNDX () const;
/** Returns the number of controls \n
* \return The requested number of controls. \n
*/
virtual int getNU () const;
/** Returns the number of integer controls \n
* \return The requested number of integer controls. \n
*/
virtual int getNUI () const;
/** Returns the number of parameters \n
* \return The requested number of parameters. \n
*/
virtual int getNP () const;
/** Returns the number of integer parameters \n
* \return The requested number of integer parameters. \n
*/
virtual int getNPI () const;
/** Returns the number of disturbances \n
* \return The requested number of disturbances. \n
*/
virtual int getNW () const;
/** Returns the number of time variables \n
* \return The requested number of time variables. \n
*/
virtual int getNT () const;
/** Return number of "online data" objects. */
virtual int getNOD () const;
/** Returns the index of the variable with specified type and \n
* component. \n
* \return The index of the requested variable. \n
*/
virtual int index( VariableType variableType_, int index_ ) const;
/** Returns the scale of a given variable. \n
* \return The requested scale or \n
* 1.0 if index is out of range \n
*/
virtual double scale( VariableType variableType_, int index_ ) const;
/** Returns the variable counter. \n
* \return The number of variables \n
*/
virtual int getNumberOfVariables() const;
/** Returns the symbolic expression of the given component of the function. \n
* \return The symbolic expression \n
*/
virtual Operator* getExpression( uint componentIdx
) const;
/** Evaluates the expression
* \return SUCCESSFUL_RETURN \n
* RET_NAN \n
* */
virtual returnValue evaluate( double *x /**< the input variable x */,
double *result /**< the result */ );
/** Evaluates the expression */
template <typename T> returnValue evaluate( Tmatrix<T> *x, Tmatrix<T> *result );
/** Evaluates the expression and also prints \n
* the intermediate results with a specified \n
* print level. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
* */
virtual returnValue evaluate( double *x /**< the input variable x */,
double *result /**< the result */,
PrintLevel printL /**< the print level */ );
/** Evaluates the expression and stores the intermediate \n
* results in a buffer (needed for automatic differentiation \n
* in backward mode) \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
* */
virtual returnValue evaluate( int number /**< storage position */,
double *x /**< the input variable x */,
double *result /**< the result */ );
/** Returns the derivative of the expression with respect \n
* to the variable var(index). \n
* \return The symbolic expression for the derivative. \n
*
*/
FunctionEvaluationTree* differentiate( int index /**< diff. index */ );
/** Substitutes var(index) with the double sub. \n
* \return The substituted expression. \n
*
*/
virtual FunctionEvaluationTree substitute( VariableType variableType_,
int index_ /**< subst. index */,
double sub_ /**< the substitution*/);
/** Checks whether the expression is zero or one \n
* \return NE_ZERO \n
* NE_ONE \n
* NE_NEITHER_ONE_NOR_ZERO \n
*
*/
virtual NeutralElement isOneOrZero();
/** Checks whether the symbolic expression is depending on \n
* a specified variable. \n
* \return BT_FALSE if no dependence is detected \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isDependingOn( const Expression &variable );
/** Checks whether the symbolic expression is linear in \n
* a specified variable. \n
* \return BT_FALSE if no linearity is \n
* detected \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isLinearIn( const Expression &variable );
/** Checks whether the expression is polynomial in \n
* a variable. \n
* \return BT_FALSE if the expression is not polynomial \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isPolynomialIn( const Expression &variable );
/** Checks whether the expression is rational in \n
* the variable var(index) \n
* \return BT_FALSE if the expression is not rational \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isRationalIn( const Expression &variable );
/** Returns the monotonicity of the expression. \n
* \return MT_NONDECREASING \n
* MT_NONINCREASING \n
* MT_NONMONOTONIC \n
*
*/
virtual MonotonicityType getMonotonicity( );
/** Returns the curvature of the expression \n
* \return CT_CONSTANT \n
* CT_AFFINE \n
* CT_CONVEX \n
* CT_CONCAVE \n
*
*/
virtual CurvatureType getCurvature( );
/** Automatic Differentiation in forward mode. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward( double *x /**< The evaluation
point x */,
double *seed /**< the seed */,
double *f /**< the value of the
expression at x */,
double *df /**< the derivative of
the expression */ );
/** Automatic Differentiation in forward mode. \n
* This function uses the intermediate \n
* results from a buffer \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward( int number /**< storage position */,
double *seed /**< the seed */,
double *df /**< the derivative of
the expression */ );
/** Automatic Differentiation in forward mode. \n
* This function stores the intermediate \n
* results in a buffer (needed for 2nd order automatic \n
* differentiation in backward mode) \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward( int number /**< storage position */,
double *x /**< The evaluation
point x */,
double *seed /**< the seed */,
double *f /**< the value of the
expression at x */,
double *df /**< the derivative of
the expression */ );
// IMPORTANT REMARK FOR AD_BACKWARD: run evaluate first to define
// the point x and to compute f.
/** Automatic Differentiation in backward mode. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_backward( double *seed /**< the seed */,
double *df /**< the derivative of
the expression */ );
// IMPORTANT REMARK FOR AD_BACKWARD: run evaluate first to define
// the point x and to compute f.
/** Automatic Differentiation in backward mode based on \n
* buffered values \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_backward( int number /**< the buffer
position */,
double *seed /**< the seed */,
double *df /**< the derivative of
the expression */);
/** Automatic Differentiation in forward mode for \n
* 2nd derivatives. \n
* This function uses intermediate \n
* results from a buffer. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward2( int number /**< the buffer
position */,
double *seed1 /**< the seed */,
double *seed2 /**< the seed for the
first derivative */,
double *df /**< the derivative of
the expression */,
double *ddf /**< the 2nd derivative
of the expression*/);
// IMPORTANT REMARK FOR AD_BACKWARD2: run AD_forward first to define
// the point x and to compute f and df.
/** Automatic Differentiation in backward mode for 2nd order \n
* derivatives based on buffered values. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_backward2( int number /**< the buffer
position */,
double *seed1 /**< the seed1 */,
double *seed2 /**< the seed2 */,
double *df /**< the 1st derivative
of the expression */,
double *ddf /**< the 2nd derivative
of the expression */ );
/** Prints the expression as C-code into a file.
* \n
* \param file The file to which the expression should be printed. \n
* \param fcnName The name of the generated function (default: "ACADOfcn"). \n
* \param realString \n
* \n
* \return SUCCESFUL_RETURN \n
*/
returnValue C_print( std::ostream& stream = std::cout,
const char *fcnName = "ACADOfcn",
const char *realString = "double"
) const;
returnValue exportForwardDeclarations( std::ostream& stream = std::cout,
const char *fcnName = "ACADOfcn",
const char *realString = "double"
) const;
returnValue exportCode( std::ostream& stream = std::cout,
const char *fcnName = "ACADOfcn",
const char *realString = "double",
uint _numX = 0,
uint _numXA = 0,
uint _numU = 0,
uint _numP = 0,
uint _numDX = 0,
uint _numOD = 0,
bool allocateMemory = true,
bool staticMemory = false
) const;
/** Clears the buffer and resets the buffer size \n
* to 1. \n
* \return SUCCESFUL_RETURN \n
*/
virtual returnValue clearBuffer();
/** Make the symbolic expression implicit. This functionality \n
* makes only sense for Differential Equation and should in \n
* general not be used for anything else. (Although it is \n
* public here.) \n
*/
virtual returnValue makeImplicit();
virtual returnValue makeImplicit( int dim_ );
/** Returns whether the function is symbolic or not. If BT_TRUE \n
* is returned, automatic differentiation will be used by \n
* default.
*/
virtual BooleanType isSymbolic() const;
/** Defines scalings for the variables. */
virtual returnValue setScale( double *scale_ );
virtual returnValue getExpression( Expression& expression ) const;
returnValue setGlobalExportVariableName(const std::string& _name);
std::string getGlobalExportVariableName() const;
unsigned getGlobalExportVariableSize() const;
//
// DATA MEMBERS:
//
protected:
Operator **f ; /**< The right-hand side expressions */
Operator **sub ; /**< The intermediate expressions */
int *lhs_comp ; /**< The components of the intermediate states */
SymbolicIndexList *indexList; /**< an SymbolicIndexList */
int dim ; /**< The dimension of the function. */
int n ; /**< The number of Intermediate expressions */
Expression safeCopy ;
/** Name of the variable that holds intermediate expressions. */
std::string globalExportVariableName;
};
template <typename T> returnValue FunctionEvaluationTree::evaluate( Tmatrix<T> *x,
Tmatrix<T> *result ){
int run1;
EvaluationTemplate<T> y(x);
for( run1 = 0; run1 < n; run1++ ){
sub[run1]->evaluate(&y);
x->operator()(indexList->index(VT_INTERMEDIATE_STATE,lhs_comp[run1])) = y.res;
}
for( run1 = 0; run1 < dim; run1++ ){
f[run1]->evaluate(&y);
result->operator()(run1) = y.res;
}
return SUCCESSFUL_RETURN;
}
CLOSE_NAMESPACE_ACADO
#include <acado/function/function_evaluation_tree.ipp>
#endif // ACADO_TOOLKIT_FUNCTION_HPP
// end of file.