dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

351 lines
13 KiB

#include "selfdrive/ui/ui.h"
#include <cassert>
#include <cmath>
#include <QtConcurrent>
#include "common/transformations/orientation.hpp"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/util.h"
#include "common/watchdog.h"
#include "system/hardware/hw.h"
#define BACKLIGHT_DT 0.05
#define BACKLIGHT_TS 10.00
#define BACKLIGHT_OFFROAD 50
// Projects a point in car to space to the corresponding point in full frame
// image space.
static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, QPointF *out) {
const float margin = 500.0f;
const QRectF clip_region{-margin, -margin, s->fb_w + 2 * margin, s->fb_h + 2 * margin};
const vec3 pt = (vec3){{in_x, in_y, in_z}};
const vec3 Ep = matvecmul3(s->scene.wide_cam ? s->scene.view_from_wide_calib : s->scene.view_from_calib, pt);
const vec3 KEp = matvecmul3(s->scene.wide_cam ? ecam_intrinsic_matrix : fcam_intrinsic_matrix, Ep);
// Project.
QPointF point = s->car_space_transform.map(QPointF{KEp.v[0] / KEp.v[2], KEp.v[1] / KEp.v[2]});
if (clip_region.contains(point)) {
*out = point;
return true;
}
return false;
}
int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_height) {
const auto line_x = line.getX();
int max_idx = 0;
for (int i = 1; i < TRAJECTORY_SIZE && line_x[i] <= path_height; ++i) {
max_idx = i;
}
return max_idx;
}
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) {
for (int i = 0; i < 2; ++i) {
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
if (lead_data.getStatus()) {
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
void update_line_data(const UIState *s, const cereal::XYZTData::Reader &line,
float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert=true) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
QPolygonF left_points, right_points;
left_points.reserve(max_idx + 1);
right_points.reserve(max_idx + 1);
for (int i = 0; i <= max_idx; i++) {
// highly negative x positions are drawn above the frame and cause flickering, clip to zy plane of camera
if (line_x[i] < 0) continue;
QPointF left, right;
bool l = calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, &left);
bool r = calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, &right);
if (l && r) {
// For wider lines the drawn polygon will "invert" when going over a hill and cause artifacts
if (!allow_invert && left_points.size() && left.y() > left_points.back().y()) {
continue;
}
left_points.push_back(left);
right_points.push_front(right);
}
}
*pvd = left_points + right_points;
}
void update_model(UIState *s,
const cereal::ModelDataV2::Reader &model,
const cereal::UiPlan::Reader &plan) {
UIScene &scene = s->scene;
auto plan_position = plan.getPosition();
if (plan_position.getX().size() < TRAJECTORY_SIZE){
plan_position = model.getPosition();
}
float max_distance = std::clamp(plan_position.getX()[TRAJECTORY_SIZE - 1],
MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE);
// update lane lines
const auto lane_lines = model.getLaneLines();
const auto lane_line_probs = model.getLaneLineProbs();
int max_idx = get_path_length_idx(lane_lines[0], max_distance);
for (int i = 0; i < std::size(scene.lane_line_vertices); i++) {
scene.lane_line_probs[i] = lane_line_probs[i];
update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx);
}
// update road edges
const auto road_edges = model.getRoadEdges();
const auto road_edge_stds = model.getRoadEdgeStds();
for (int i = 0; i < std::size(scene.road_edge_vertices); i++) {
scene.road_edge_stds[i] = road_edge_stds[i];
update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx);
}
// update path
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
if (lead_one.getStatus()) {
const float lead_d = lead_one.getDRel() * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
max_idx = get_path_length_idx(plan_position, max_distance);
update_line_data(s, plan_position, 0.9, 1.22, &scene.track_vertices, max_idx, false);
}
void update_dmonitoring(UIState *s, const cereal::DriverStateV2::Reader &driverstate, float dm_fade_state, bool is_rhd) {
UIScene &scene = s->scene;
const auto driver_orient = is_rhd ? driverstate.getRightDriverData().getFaceOrientation() : driverstate.getLeftDriverData().getFaceOrientation();
for (int i = 0; i < std::size(scene.driver_pose_vals); i++) {
float v_this = (i == 0 ? (driver_orient[i] < 0 ? 0.7 : 0.9) : 0.4) * driver_orient[i];
scene.driver_pose_diff[i] = fabs(scene.driver_pose_vals[i] - v_this);
scene.driver_pose_vals[i] = 0.8 * v_this + (1 - 0.8) * scene.driver_pose_vals[i];
scene.driver_pose_sins[i] = sinf(scene.driver_pose_vals[i]*(1.0-dm_fade_state));
scene.driver_pose_coss[i] = cosf(scene.driver_pose_vals[i]*(1.0-dm_fade_state));
}
const mat3 r_xyz = (mat3){{
scene.driver_pose_coss[1]*scene.driver_pose_coss[2],
scene.driver_pose_coss[1]*scene.driver_pose_sins[2],
-scene.driver_pose_sins[1],
-scene.driver_pose_sins[0]*scene.driver_pose_sins[1]*scene.driver_pose_coss[2] - scene.driver_pose_coss[0]*scene.driver_pose_sins[2],
-scene.driver_pose_sins[0]*scene.driver_pose_sins[1]*scene.driver_pose_sins[2] + scene.driver_pose_coss[0]*scene.driver_pose_coss[2],
-scene.driver_pose_sins[0]*scene.driver_pose_coss[1],
scene.driver_pose_coss[0]*scene.driver_pose_sins[1]*scene.driver_pose_coss[2] - scene.driver_pose_sins[0]*scene.driver_pose_sins[2],
scene.driver_pose_coss[0]*scene.driver_pose_sins[1]*scene.driver_pose_sins[2] + scene.driver_pose_sins[0]*scene.driver_pose_coss[2],
scene.driver_pose_coss[0]*scene.driver_pose_coss[1],
}};
// transform vertices
for (int kpi = 0; kpi < std::size(default_face_kpts_3d); kpi++) {
vec3 kpt_this = default_face_kpts_3d[kpi];
kpt_this = matvecmul3(r_xyz, kpt_this);
scene.face_kpts_draw[kpi] = (vec3){{(float)kpt_this.v[0], (float)kpt_this.v[1], (float)(kpt_this.v[2] * (1.0-dm_fade_state) + 8 * dm_fade_state)}};
}
}
static void update_sockets(UIState *s) {
s->sm->update(0);
}
static void update_state(UIState *s) {
SubMaster &sm = *(s->sm);
UIScene &scene = s->scene;
if (sm.updated("liveCalibration")) {
auto rpy_list = sm["liveCalibration"].getLiveCalibration().getRpyCalib();
auto wfde_list = sm["liveCalibration"].getLiveCalibration().getWideFromDeviceEuler();
Eigen::Vector3d rpy;
Eigen::Vector3d wfde;
if (rpy_list.size() == 3) rpy << rpy_list[0], rpy_list[1], rpy_list[2];
if (wfde_list.size() == 3) wfde << wfde_list[0], wfde_list[1], wfde_list[2];
Eigen::Matrix3d device_from_calib = euler2rot(rpy);
Eigen::Matrix3d wide_from_device = euler2rot(wfde);
Eigen::Matrix3d view_from_device;
view_from_device << 0,1,0,
0,0,1,
1,0,0;
Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib;
Eigen::Matrix3d view_from_wide_calib = view_from_device * wide_from_device * device_from_calib ;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j);
scene.view_from_wide_calib.v[i*3 + j] = view_from_wide_calib(i,j);
}
}
scene.calibration_valid = sm["liveCalibration"].getLiveCalibration().getCalStatus() == 1;
scene.calibration_wide_valid = wfde_list.size() == 3;
}
if (sm.updated("pandaStates")) {
auto pandaStates = sm["pandaStates"].getPandaStates();
if (pandaStates.size() > 0) {
scene.pandaType = pandaStates[0].getPandaType();
if (scene.pandaType != cereal::PandaState::PandaType::UNKNOWN) {
scene.ignition = false;
for (const auto& pandaState : pandaStates) {
scene.ignition |= pandaState.getIgnitionLine() || pandaState.getIgnitionCan();
}
}
}
} else if ((s->sm->frame - s->sm->rcv_frame("pandaStates")) > 5*UI_FREQ) {
scene.pandaType = cereal::PandaState::PandaType::UNKNOWN;
}
if (sm.updated("carParams")) {
scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl();
}
if (sm.updated("wideRoadCameraState")) {
float scale = (sm["wideRoadCameraState"].getWideRoadCameraState().getSensor() == cereal::FrameData::ImageSensor::AR0231) ? 6.0f : 1.0f;
scene.light_sensor = std::max(100.0f - scale * sm["wideRoadCameraState"].getWideRoadCameraState().getExposureValPercent(), 0.0f);
}
scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition;
}
void ui_update_params(UIState *s) {
auto params = Params();
s->scene.is_metric = params.getBool("IsMetric");
s->scene.map_on_left = params.getBool("NavSettingLeftSide");
}
void UIState::updateStatus() {
if (scene.started && sm->updated("controlsState")) {
auto controls_state = (*sm)["controlsState"].getControlsState();
auto alert_status = controls_state.getAlertStatus();
auto state = controls_state.getState();
if (alert_status == cereal::ControlsState::AlertStatus::USER_PROMPT) {
status = STATUS_WARNING;
} else if (alert_status == cereal::ControlsState::AlertStatus::CRITICAL) {
status = STATUS_ALERT;
} else if (state == cereal::ControlsState::OpenpilotState::PRE_ENABLED || state == cereal::ControlsState::OpenpilotState::OVERRIDING) {
status = STATUS_OVERRIDE;
} else {
status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED;
}
}
// Handle onroad/offroad transition
if (scene.started != started_prev || sm->frame == 1) {
if (scene.started) {
status = STATUS_DISENGAGED;
scene.started_frame = sm->frame;
}
started_prev = scene.started;
emit offroadTransition(!scene.started);
}
// Handle prime type change
if (prime_type != prime_type_prev) {
prime_type_prev = prime_type;
emit primeTypeChanged(prime_type);
Params().put("PrimeType", std::to_string(prime_type));
}
}
UIState::UIState(QObject *parent) : QObject(parent) {
sm = std::make_unique<SubMaster, const std::initializer_list<const char *>>({
"modelV2", "controlsState", "liveCalibration", "radarState", "deviceState", "roadCameraState",
"pandaStates", "carParams", "driverMonitoringState", "carState", "liveLocationKalman", "driverStateV2",
"wideRoadCameraState", "managerState", "navInstruction", "navRoute", "uiPlan",
});
Params params;
prime_type = std::atoi(params.get("PrimeType").c_str());
language = QString::fromStdString(params.get("LanguageSetting"));
// update timer
timer = new QTimer(this);
QObject::connect(timer, &QTimer::timeout, this, &UIState::update);
timer->start(1000 / UI_FREQ);
}
void UIState::update() {
update_sockets(this);
update_state(this);
updateStatus();
if (sm->frame % UI_FREQ == 0) {
watchdog_kick(nanos_since_boot());
}
emit uiUpdate(*this);
}
Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) {
setAwake(true);
resetInteractiveTimout();
QObject::connect(uiState(), &UIState::uiUpdate, this, &Device::update);
}
void Device::update(const UIState &s) {
updateBrightness(s);
updateWakefulness(s);
// TODO: remove from UIState and use signals
uiState()->awake = awake;
}
void Device::setAwake(bool on) {
if (on != awake) {
awake = on;
Hardware::set_display_power(awake);
LOGD("setting display power %d", awake);
emit displayPowerChanged(awake);
}
}
void Device::resetInteractiveTimout() {
interactive_timeout = (ignition_on ? 10 : 30) * UI_FREQ;
}
void Device::updateBrightness(const UIState &s) {
float clipped_brightness = BACKLIGHT_OFFROAD;
if (s.scene.started) {
clipped_brightness = s.scene.light_sensor;
// CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm
if (clipped_brightness <= 8) {
clipped_brightness = (clipped_brightness / 903.3);
} else {
clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0);
}
// Scale back to 10% to 100%
clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f);
}
int brightness = brightness_filter.update(clipped_brightness);
if (!awake) {
brightness = 0;
}
if (brightness != last_brightness) {
if (!brightness_future.isRunning()) {
brightness_future = QtConcurrent::run(Hardware::set_brightness, brightness);
last_brightness = brightness;
}
}
}
void Device::updateWakefulness(const UIState &s) {
bool ignition_just_turned_off = !s.scene.ignition && ignition_on;
ignition_on = s.scene.ignition;
if (ignition_just_turned_off) {
resetInteractiveTimout();
} else if (interactive_timeout > 0 && --interactive_timeout == 0) {
emit interactiveTimout();
}
setAwake(s.scene.ignition || interactive_timeout > 0);
}
UIState *uiState() {
static UIState ui_state;
return &ui_state;
}