dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

245 lines
8.9 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/set_arithmetics/taylor_model.hpp
* \author Boris Houska, Mario Villanueva, Benoit Chachuat
* \date 2013
*/
#ifndef ACADO_TOOLKIT_TAYLOR_MODEL_HPP
#define ACADO_TOOLKIT_TAYLOR_MODEL_HPP
#include <acado/utils/acado_utils.hpp>
BEGIN_NAMESPACE_ACADO
template <typename T> class TaylorVariable;
//! @brief C++ class supporting the definition and computation of Taylor models for factorable functions
////////////////////////////////////////////////////////////////////////
//! mc::TaylorModel<T> is a C++ base class that supports the definition and
//! computation of Taylor models for factorable functions on a box. The
//! template parameter T corresponds to the type used in computing the
//! remainder error bound.
////////////////////////////////////////////////////////////////////////
template <typename T>
class TaylorModel
////////////////////////////////////////////////////////////////////////
{
friend class TaylorVariable<T>;
template <typename U> friend class TaylorModel;
public:
//! @brief Constructor
TaylorModel
( const unsigned int nvar_, const unsigned int nord_ )
{ _size( nvar_, nord_ ); }
//! @brief Destructor
~TaylorModel()
{ _cleanup(); }
//! @brief Get number of variables in the TaylorModel
unsigned int nvar() const
{ return _nvar; };
//! @brief Get order of the TaylorModel
unsigned int nord() const
{ return _nord; };
//! @brief Reset the TaylorModel
void reset()
{ _reset(); };
//! @brief Taylor model exceptions
class Exceptions
{
public:
//! @brief Enumeration type for TaylorModel exception handling
enum TYPE{
DIV=1, //!< Error during calculation of a TaylorVariable for a division term (division by zero)
INTER, //!< Error during intersection of two sets of bounds (empty intersection)
EIGEN, //!< Error during eigenvalue decomposition in range bounder
SCALING, //!< Error during scaling (degenerate variable range)
SIZE=-1, //!< Error due to an inconsistent number of variables (zero variables)
INIT=-2, //!< Error due to invalid initialization of a TaylorVariable
INCON=-3, //!< Error due to inconsistency between the Taylor model and T bounders
TMODEL=-4,//!< Error due to an operation between TaylorVariable linked to different TaylorModel
UNDEF=-33 //!< Error due to calling a function/feature not yet implemented
};
//! @brief Constructor for error <a>ierr</a>
Exceptions( TYPE ierr_ ) : _ierr( ierr_ ){}
//! @brief Inline function returning the error flag
int ierr(){ return _ierr; }
private:
TYPE _ierr;
};
//! @brief Taylor model options
struct Options
{
//! @brief Constructor
Options():
BOUNDER_TYPE(LSB), PROPAGATE_BNDT(false), INTER_WITH_BNDT(false),
SCALE_VARIABLES(true), CENTER_REMAINDER(true), REF_MIDPOINT(true)
{}
//! @brief Copy constructor
template <typename U> Options
( U&_options )
: BOUNDER_TYPE( _options.BOUNDER_TYPE ),
PROPAGATE_BNDT( _options.PROPAGATE_BNDT ),
INTER_WITH_BNDT( _options.INTER_WITH_BNDT ),
SCALE_VARIABLES( _options.SCALE_VARIABLES ),
CENTER_REMAINDER( _options.CENTER_REMAINDER ),
REF_MIDPOINT( _options.REF_MIDPOINT )
{}
template <typename U> Options& operator =
( U&_options ){
BOUNDER_TYPE = _options.BOUNDER_TYPE;
PROPAGATE_BNDT = _options.PROPAGATE_BNDT;
INTER_WITH_BNDT = _options.INTER_WITH_BNDT;
SCALE_VARIABLES = _options.SCALE_VARIABLES;
CENTER_REMAINDER = _options.CENTER_REMAINDER;
REF_MIDPOINT = _options.REF_MIDPOINT;
return *this;
}
//! @brief Taylor model range bounders
enum BOUNDER{
NAIVE=0, //!< Naive polynomial range bounder
LSB, //!< Lin & Stadtherr range bounder
EIGEN, //!< Eigenvalue decomposition-based bounder
HYBRID //!< Hybrid LSB + EIGEN range bounder
};
//! @brief Flag indicating the Taylor model range bounder
int BOUNDER_TYPE;
//! @brief Flag indicating whether interval bound are to be propagated in T arithmetic
bool PROPAGATE_BNDT;
//! @brief Flag indicating whether interval bound for the Taylor model and T arithmetic are to be intersected
bool INTER_WITH_BNDT;
//! @brief Flag indicating whether the variables are to be scaled to [-1,1] internally -- this requires proper intervals!
bool SCALE_VARIABLES;
//! @brief Flag indicating whether the remainder term is to be centered after each operation
bool CENTER_REMAINDER;
//! @brief Flag indicating whether the reference in Taylor expansion of univariate function is taken as the mid-point of the inner Taylor model (true) or the constant term in the centered inner Taylor model (false)
bool REF_MIDPOINT;
} options;
//! @brief Pause the program execution and prompt the user
static void pause();
private:
//! @brief Model order of the model
unsigned int _nord;
//! @brief Number of independent variables
unsigned int _nvar;
//! @brief Number of monomial terms
unsigned int _nmon;
//! @brief Positions of terms of degrees 1,...,_nord
unsigned int *_posord;
//! @brief Variable exponents for monomial terms 1,...,_nmon
unsigned int *_expmon;
//! @brief Variable exponents resulting from the product of two monomial terms 1,...,_nmon
unsigned int **_prodmon;
//! @brief Bounds on all the monomial terms 1,...,_nmon for given interval vector \f$X\f$
T *_bndmon;
//! @brief Have any of the model variables been modified?
bool _modvar;
//! @brief Binomial coefficients
unsigned int *_binom;
//! @brief Bounds on the terms \f$[X-{\rm mid}(X)]^i\f$ for given \f$X\f$
T **_bndpow;
//! @brief Reference point
double *_refpoint;
//! @brief Variable scaling
double *_scaling;
//! @brief Taylor variable to speed-up computations and reduce dynamic allocation
TaylorVariable<T>* _TV;
//! @brief Set the order (nord) and number of variables (nvar)
void _size
( const unsigned int nvar, const unsigned int nord );
// //! @brief Set the order (nord) and number of variables (nvar)
// template <typename U> void _copy_data
// ( const TaylorModel<U>&TM );
//! @brief Populate _bndpow[ix] w/ bounds on the terms \f$[X-{\rm mid}(X)]^{ix}\f$
void _set_bndpow
( const unsigned int ix, const T&X, const double scaling );
//! @brief Populate _bndmon w/ bounds on all possible monomial terms
void _set_bndmon();
//! @brief Populate array _posord w/ positions of terms of degrees 1,...,nord
void _set_posord();
//! @brief Populate array _expmon w/ exponents for monomial terms 1,...,nmon
void _set_expmon();
//! @brief Generate exponent configuration for subsequent monomial terms
void _next_expmon
( unsigned int *iexp, const unsigned int iord );
//! @brief Populate array _prodmon w/ exponents resulting from the product of two monomial terms 1,...,nmon
void _set_prodmon();
//! @brief Locates position in _posord of monomial term with variable exponents iexp
unsigned int _loc_expmon
( const unsigned int *iexp );
//! @brief Populate array _binom w/ binomial coefficients
void _set_binom();
//! @brief Return binomial coefficient \f$\left(\stackrel{i}{j}\right)\f$
unsigned int _get_binom
( const unsigned int n, const unsigned int k ) const;
//! @brief Reset the variable bound arrays
void _reset();
//! @brief Clean up the arrays
void _cleanup();
//! @brief Display the elements of a 2D array
template< typename U > static void _display
( const unsigned int m, const unsigned int n, U*&a, const unsigned int lda,
const std::string&stra, std::ostream&os );
};
CLOSE_NAMESPACE_ACADO
#include <acado/set_arithmetics/taylor_variable.hpp>
#include <acado/set_arithmetics/taylor_model.ipp>
#include <acado/set_arithmetics/taylor_variable.ipp>
#endif // ACADO_TOOLKIT_TAYLOR_MODEL_HPP